
JANUARY 2013
VOLUME 20 NUMBER 01

Dante is getting a makeover. The

mercenary demon hunter is back in

action in DmC Devil May Cry, a highly

anticipated reboot of the franchise.

By working closely with Capcom,

developer Ninja Theory stripped Dante to

the bare essentials to incorporate the story

of his origin into this new action adventure.

The UK studio utilized Unreal Engine 3

(UE3) to bring this multi-world story to life.

Previously, Ninja Theory utilized

UE3 technology to ship Namco Bandai’s

Enslaved: Odyssey to the West.

“We’ve worked with the Unreal Engine for

a long time now, and we found that the engine

would enable us to achieve what we wanted

with DmC, whilst at the same time allowing us

to get involved in making the game straight

away,” said Dominic Matthews of Ninja Theory.

“A new engine would have meant at least six

months’ worth of learning before we could

get started with the actual development.”

Matthews continued, “We’ve learned what

we can do with the engine and how we can

modify it to our needs. Everything that we

learned during Enslaved development we’ve

been able to take into our work on DmC.”

Alex Jones, producer at Capcom, said

UE3 allowed the team to create larger open

areas than they’d done before, moving

away from corridors, and gave them more

fl exibility in opening up the gameplay.

“Unreal Engine scripting is very

fl exible, so some of our game events are

a little more involved than in previous

Devil May Cry games,” said Jones.

Matthews said Ninja Theory used pretty

much all of the engine’s features at one point

or another during the game’s development.

“One really useful aspect for us was

Unreal Matinee, as this allowed us to easily

set up complex cutscenes and really get

into the minutiae of achieving the fi lmic

look that we’re after,” said Matthews. “On

a related front, the material system gives

us complete control over the look and feel

of every surface – early on we made the

decision to allow our artists to create their

own materials and this really helped us

achieve the distinct atmosphere of the game.”

Ninja Theory has been at the forefront

of performance capture, having worked

with actor and director Andy Serkis on

Heavenly Sword and Enslaved. In DmC,

Dante and the other characters are being

brought to life using the studio’s latest

performance capture technology, which

has excelled at pushing things forward

over its past story-driven action games.

“We’ve developed an in-house facial

motion capture solver that we used for all of

the cinematic scenes in DmC Devil May Cry,”

said Matthews. “This allows us to deliver top

quality results without having to pay external

companies to wrangle content for us.”

Performance capture plays an important

role in bringing a Hollywood cinematic feeling to

the game. Early on, Capcom told Ninja Theory

to think of Dante and DmC as a contemporary

movie, as one goal is to introduce a

fresh take on Devil May Cry to a wider

audience, while at the same time preserving

and building on the DNA of the series.

“This idea of creating a Dante as if he were

in a modern day movie has guided us through

development,” said Matthews. “We’re very

happy with where we’ve ended up and I hope

that those new to the series and existing Devil

May Cry fans will fi nd a lot of fun in the game.”

In order to improve the overall game

experience, Ninja Theory built new technology

on top of UE3 to customize lighting and

shadowing and to create faster and more

accurate cloth simulations and faster particle

systems. They also worked with Epic Games

and other UE3 teams on the Unreal Developer

Network (UDN) throughout the process.

“UDN is great for quickly looking up

documentation, but it’s the community

forums that are invaluable,” said Matthews.

“All UE3 licensed developers have

access to the forums so there’s a lot of

experience to draw upon, which always

helps when there is a tricky issue to solve.”

“Having an engine capable of cross-

platform development from the start provides

a huge advantage,” said Matthews. “The

platform fl exibility that UE3 demonstrates

was a key factor in allowing us to concentrate

on the game itself. Rather than having to

designate one console as a lead platform

we were able to treat them as equals. There

are, of course, systems that work differently

between platforms but, thanks to the engine,

these are the exception rather than the rule.”

By allowing UE3 to do a lot of the heavy

lifting, Ninja Theory was able to focus its

efforts on creating a fresh approach to a

beloved video game protagonist. DmC pushes

the gameplay forward by giving players more

choices, while offering a cinematic experience

that’s sure to attract a wide audience.

Thanks to Ninja Theory for speaking with freelance reporter

John Gaudiosi for this story.

UPCOMING EPIC ATTENDED EVENTS

Please email licensing@epicgames.com for appointments

D.I.C.E Summit
Las Vegas, NV
February 5-8, 2013

Cloud Gaming Europe
London, UK
February 21-22, 2013

Ninja Theory and Capcom

Reboot Devil May Cry with

Unreal Engine 3

w
w
w
.u
n
re
a
le
n
g
in
e
.c
o
m

© 2012, Epic Games, Inc. Epic, Epic Games, Unreal, Unreal Developer Network, UDN, Unreal Matinee, Unreal Engine, and UE3 are trademarks or registered trademarks of Epic Games, Inc. in the United States of
America and elsewhere. All other trademarks are property of their respective owners. All rights reserved.

http://www.unrealengine.com
mailto:licensing@epicgames.com

Postmortem

030	 	 PaPo	&	Yo
How would you make a game about
growing up with an alcoholic parent?
Find out how Minority Media made it
work in this Papo & Yo postmortem. By
Deborah Chantson and Julien Barnoin

Features

008	 	 Front	Line	awards

The Game Developer readers have
spoken: Find out which dev tools were
the best in the business for 2012. By Staff

018	 	 Bring	Your	tooLs	to	Browsers
The web isn’t going anywhere. Insomniac
Games senior engine programmer Chris
Edwards explains how—and why—they
migrated their dev tools to the web. By
Chris Edwards

025	 	 remixing	CLassiCs:	interview	
	 	 with	masaYa	matsuura

Game Developer caught up with PaRappa
creator Masaya Matsuura to chat about
the Japanese game industry, tech, and
the new indie generation. By Patrick Miller

037	 	 PLaYers	make	the	ruLes
A game is only as good as your players
will let it be. Don’t let your best-laid
game designs be ruined by contagious
“bad” player behavior. By Nils Pihl

Departments

002	 game	Plan		 [editorial]

004		 heads	up	display [news]

006		 educated	Play	 [education]

007	 good	Job	 [Career]

016		 gdC	news [news]

040	 toolbox	 [review]

043	 inner	Product	 [Programming]

046	 Pixel	Pusher	 [art]

049	 design	of	the	times	 [design]

052	 aural	Fixation	 [sound]

054	 the	Business	 [Business]

055	 insert	Credit	 [editorial]

064	 arrested	development	 [humor]

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
0

1
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

toc 001
C O n t e n t s _ J a n u a r y 2 0 1 3
V o l u m e 2 0 N u m b e r 0 1

0
0

2

002 gp
G A M E P L A N _ J a n u a r y 2 0 1 3

NEW LOOK, SAME BOOK First: Welcome to
the new Game Developer magazine!
You’ve already noticed the fi rst big step
we’ve taken: Game Developer has a new look!
Magazine redesigns are usually a big, time-
consuming endeavor that takes several months
of mock-ups and approvals, but we didn’t
have time for that, so we just told Art Director
Joseph Mitch to redesign the magazine and he
said “Okay.”

We were all sad to see the ripped-from-
Thrasher grungy look go, but this new, clean
look should be a little bit easier on your eyes
when you’re digging into our latest postmortem
(especially if you’re reading on a tablet). I’m
excited to see what you all think about it, so
tweet your feedback to me at @gamedevmag.

In addition to the new design, we’ve also
upgraded our magazine’s binding from the
saddle-stitched binding to what’s called
perfect binding, which is mostly neat because
now we get a spiffy book spine (handy for
those of you collecting the print versions). It’s
the small things, you know?

IMPROVED DIGITAL VERSION Our digital
edition has come a long way since its release
about a year ago, and the iOS app in particular
has seen a few major under-the-hood
improvements; not only has the resolution
been bumped up to make the magazine more
readable (especially on Retina displays), but
there is also a new just text-and-images
reader mode (similar to Instapaper or
Readability) that makes it possible to actually

read the articles on a smartphone or other
smaller-than-a-tablet device.

And yes, I say “smartphone or other device”
instead of “iPhone” because our Android app is
fi nally coming along! We’re still trying to fi gure
out our specifi c launch plans (and, in fact, it
might be out by the time you read this), but rest
assured that all of you who told me on Twitter
that you wouldn’t be resubscribing until we
were on Android can rejoin the fl ock very soon
(that means you, @SnakeEaterITA).

GAMADEVELOPER MAGASUTRA This year,
we’re going to try to play more nicely with
our sister site Gamasutra. That means you’ll
start seeing the occasional Gamasutra feature
show up in GD Mag (in our new section called
Cross-Platform), and vice versa. We love doing
print/digital magazines, but we want to make
some of our excellent content freely available
for a wider audience to read and discuss, and
for Gamasutra, it’ll be a neat opportunity to
give some love to some of their longer-form
articles that might get missed in your daily
RSS sweep. (Fun fact: The Google description
for Gamasutra calls it the “free online version
of Game Developer magazine,” so tease
Gamasutra Editor-in-Chief Kris Graft about
that when you see him at GDC 2013.)

2012 was a big year for us and we’re looking
forward to making 2013 even better. Hope you
enjoy the magazine!

—Patrick Miller
@patthefl ip

Mare Sheppard.

Corrections

w From the November 2012 issue’s Power 50 feature: We incorrectly credited “Dan Miller” from The
Blast Furnace for his work on PITFALL! for iOS; the correct name is Dan Roberts. Also, the photo
published for Jon Mak from Queasy Games was the wrong Jon Mak. Sorry about that. (Fortunately,
we ran a whole bunch of photos of the real Jon Mak in the SOUND SHAPES postmortem in
December 2012, so you should have a pretty good idea of what he looks like by now.)

w From the December 2012 issue’s Year in Review feature: The photo next to
Mare Sheppard’s entry was not actually Mare Sheppard. This is Mare Sheppard
right here. We regret the error.

UBM LLC.
303 Second Street, Suite 900, South Tower
San Francisco, CA 94107
t: 415.947.6000 f: 415.947.6090

W W W. U B M . C O M

SUBSCRIPTION SERVICES

FOR INFORMATION, ORDER QUESTIONS, AND
ADDRESS CHANGES
t: 800.250.2429 f: 847.763.9606
gamedeveloper@halldata.com
www.gdmag.com/contactus

EDITORIAL

PUBLISHER
Simon Carless - scarless@gdmag.com
Pearl Verzosa - pearl.verzosa@ubm.com
EDITOR
Patrick Miller - pmiller@gdmag.com
EDITOR EMERITUS
Brandon Sheffield - bsheffield@gdmag.com
MANAGER, PRODUCTION
Dan Mallory - dmallory@gdmag.com
ART DIRECTOR
Joseph Mitch - jmitch@gdmag.com
CONTRIBUTING WRITERS
Chris Edwards, Deborah Chantson, Noel
Llopis, Jon Beilin, Steve Theodore, Damion
Schubert, Damian Kastbauer, David Edery,
Alexandra Hall, Matthew Wasteland, Magnus
Underland
ADVISORY BOARD
Mick West Independent
Brad Bulkley Microsoft
Clinton Keith Independent
Bijan Forutanpour Sony Online Entertainment
Mark DeLoura Independent
Carey Chico Independent
Mike Acton Insomniac

ADVERTISING SALES

VICE PRESIDENT, SALES
Aaron Murawski - aaron.murawski@ubm.com
t: 415.947.6227
MEDIA ACCOUNT MANAGER
Jennifer Sulik - jennifer.sulik@ubm.com
t: 415.947.6227
GLOBAL ACCOUNT MANAGER, RECRUITMENT
Gina Gross - gina.gross@ubm.com
t: 415.947.6241
GLOBAL ACCOUNT MANAGER, EDUCATION
Rafael Vallin - rafael.vallin@ubm.com
t: 415.947.6223

ADVERTISING PRODUCTION

PRODUCTION MANAGER
Pete C. Scibilia - peter.scibilia@ubm.com
t: 516-562-5134

REPRINTS

WRIGHT’S MEDIA
Jason Pampell - jpampell@wrightsmedia.com
t: 877-652-5295

AUDIENCE DEVELOPMENT

AUDIENCE DEVELOPMENT MANAGER
Nancy Grant e: nancy.grant@ubm.com
LIST RENTAL
Peter Candito
Specialist Marketing Services
t: 631-787-3008 x 3020
petercan@SMS-Inc.com
ubm.sms-inc.com

G A M E D E V E LO P E R
M A G A Z I N E
W W W. G D M A G . C O M

Every year I make a few New Year’s Resolutions; last year I resolved to wake up by 8 a.m.
every day and start fl ossing my teeth. (Pearl, our publisher, will be more than happy to
tell you how the fi rst one worked out.) But I’m going to walk you through a few planned
improvements we’re making to Game Developer in 2013, in the hope that you, dear
readers, will keep me a bit more accountable than my dentist does.

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

Our New Year’s Resolutions
GAME DEVELOPER’S SELF-IMPROVEMENT GOALS FOR 2013

http://WWW.GDMAG.COM
mailto:gamedeveloper@halldata.com
http://www.gdmag.com/contactus
mailto:scarless@gdmag.com
mailto:pearl.verzosa@ubm.com
mailto:pmiller@gdmag.com
mailto:bsheffield@gdmag.com
mailto:dmallory@gdmag.com
mailto:jmitch@gdmag.com
mailto:aaron.murawski@ubm.com
mailto:jennifer.sulik@ubm.com
mailto:gina.gross@ubm.com
mailto:rafael.vallin@ubm.com
mailto:peter.scibilia@ubm.com
mailto:jpampell@wrightsmedia.com
mailto:nancy.grant@ubm.com
mailto:petercan@SMS-Inc.com
http://ubm.sms-inc.com
http://WWW.UBM.COM

http://WWW.GDCVAULT.COM

0
0

4

PM: The Legal Assistance for Game Developers series of videos—
what inspired them? Who uses them?
SS: Our goal with our educational work like LAGD is to make sure that
the people we help don’t need lawyers. LAGD is just an extension of
that. After a string of game developers came to us in February, we
realized there was no general information we could point them to at
all. We were writing all of this general information ourselves, then
having to do the specifi c, technical work afterward, too. That’s when
we decided that we should release all the general information out
there in a format that people would want to engage in.

Since we already had text, we could post it on our website like
we do a lot of our other guides, but a lot of people don’t want to just
read something. Creative people are visual and auditory, so we’re
trying to get this information to people any way they want to accept
it, and audio/video in addition to text seems like the way to go. Some
of our topics include cloned games (what can and can’t be cloned,
and how to react if your game is cloned), using real people in your
games, working with business partners, and making fan fi lms.

PM: Got any success stories so far?
SS: Since we’re attorneys, our biggest public relations problem
is that we’re under confi dentiality obligations. Of what we can
talk about, we’ve assisted with games like THE DARK MOD to
ensure they could legally release a standalone version of their
mod. We’ve defended the work of feminist media critics like Anita
Sarkeesian of Feminist Frequency, and Jonathan McIntosh, the
creator of the well-known Buffy vs. Edward mash-up. We’ve fought
and won against an organization that was improperly threatening
the mobile game WORDSMITH.

PM: What should devs know about before starting their own studio?
SS: First off: Our three-part trademark episode of LAGD talks
about the process of picking a name for your studio and game.
Trademark issues, such as calling your game Super Monopoly
when your game has nothing to do with the company that makes
Monopoly, are by far the easiest way to get your game taken down
and have a lot of trouble retooling your game later on.

The more general number two is: Always try to fi gure out what
you don’t know. Try to read up on a bit of everything when it comes
to business or legal issues, so you can realize when you’re out of
your element and you need help. The best thing you can do is realize
situations where there could be a problem that you may need to fi x,
because then you can either do enough research to fi x it, or better
anticipate what happens when things actually do go wrong.

PM: You mentioned cloning earlier. How can devs protect themselves
from other devs cloning their games?
SS: We’re actually putting out a whole huge 10–20 page guide about
cloned games, but that subject is way too huge to talk about in
this interview with specifi c tips. Long story short: Cloning games
is mostly legal, but in some situations it’s not. Not to do too much
self-promotion, but the best way for indies to protect themselves is
to read our guide that we’ll be publishing, and guides like ours, to
inform themselves. —Patrick Miller

WHAT CAN A SMALL DEV

STUDIO DO TO STAY ON

THE RIGHT SIDE OF THE

LAW WITHOUT BREAKING

THE BANK? WE TALKED

TO SHAUN SPALDING,

ASSISTANT DIRECTOR OF

LEGAL AID NONPROFIT

NEW MEDIA RIGHTS

(NEWMEDIARIGHTS.ORG),

ABOUT STICKING UP FOR

THE LITTLE GUY.

004 h
H E A D S - U P D I S P L AY _ J a n u a r y 2 0 1 3

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ACEACE ATTORNEY ATTORNEY ATTORNEY
NEW MEDIA RIGHTS GIVES GAME DEVS FREE
LEGAL ADVICE

PATRICK MILLER: What is New Media Rights?
SHAUN SPALDING: New Media Rights (NMR) is a nonprofi t program of
California Western School of Law that provides free legal assistance
to independent creative people and average Internet users. If you
are starting a creative project and need help preventing issues
before they show up, or if you get a letter from someone using their
legal weight to bully you, you can come to us.

The same type of assistance that costs $300 an hour from
a private lawyer, we give away for free. We do this because the
Internet has created an era where individuals with no money and
a lot of talent can create work that can compete with large media
companies, but those companies have huge legal departments,
and the only resource we normal people have to fi gure out what we
can and can’t do legally is Google.

We also do educational and policy work; we create guides,
videos, and speak in the community, and we do things like change
regulations at the FCC and Copyright Offi ce through regulatory
comments. For example, earlier this year, we were one of the
groups that helped ensure that jailbreaking your phone is still
legal. We also told the FCC that the government shouldn’t be able
to shut down your phone service on public transportation.

THE DARK MOD.

 h

http://NEWMEDIARIGHTS.ORG

0
0

5
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

THE TWINETWINETWINE REVOLUTION REVOLUTION REVOLUTION REVOLUTION REVOLUTION REVOLUTION
NEW CREATORS FIND THEIR VOICES THROUGH HYPERTEXT

 h h 005
H E A D S - U P D I S P L AY _ J a n u a r y 2 0 1 3

 REVOLUTION
NEW CREATORS FIND THEIR VOICES THROUGH HYPERTEXT

In an era of tumultuous game
industry change, one of the
most notable shifts comes in the
increasing visibility of players and
developers, be they female, queer,
or otherwise marked “different,”
who fall outside of the game
industry’s focus on the 18–34 male
demographic. One such episode
is playing out in the interactive
fi ction (IF) community, where a
diverse group of “othered” creators
is enthusiastically adopting a
hypertext creation tool called Twine
(gimcrackd.com/etc/src/).

Twine has existed since at least 2009,
but it has only really risen to prominence
in the last year or so. Chris Klimas, Twine’s
original creator, is as surprised as anyone.
“I really thought Twine was a dead project
as recently as a year ago,” said Klimas. “It’s
been kind of astonishing to see that, fi rst
of all, people are using it, and secondly,
the directions they’re taking it in. I have to
credit Anna Anthropy for advocating quite
effectively for Twine. I think she’s the single
biggest reason why people are taking it up.“

Porpentine, a queer woman who
recently hosted a Twine game jam, is
another strong advocate for the software.
“Twine is accessible on a level unseen
since HyperCard, scales with existing
languages (HTML/CSS/JavaScript), and
has great visual feedback,” she said.

“Twine is one of the few applications I
can think of that actually feels good to a
non-programmer artist—like a table full of
notecards that can be connected.”

Twine’s similarity to HyperCard is
no accident. “I wanted Twine to be like
HyperCard,” said Klimas. “The concept I
had in mind was that you would be able to
get pretty far without writing any code, but
you could also dip your toes into that water
when you were ready. I wanted to make it
for writers, not programmers.”

Anthropy, the outspoken developer
and critic whose book Rise of the
Videogame Zinesters is a sort of DIY
game-creation manifesto, is as close
as anyone to the epicenter of the
Twine explosion. She started using
Twine in 2011 to create games like the
kinky, adult-themed ENCYCLOPEDIA
FUCKME, and more recently published
a simple how-to for Twine game
authoring (auntiepixelante.com/
twine/). She sees Twine as an ideal
tool to allow a wider variety of people
to make games.

“The mainstream sort of game
communities are really hostile to a lot of
what they perceive as the other, to women,
to queer people, to trans people, and so
[the outsiders] don’t generally have access
to the same means of creation,” she
told Game Developer. “They’re dissuaded
from learning to program, to going to

engineering school or whatever. They don’t
traditionally have the means to develop
those kinds of skills.”

Twine’s ease of use helps to mitigate
that systemic disadvantage. “There’s
almost no programming involved, and that’s
a really traditional technological barrier
to making games for a lot of people,”
said Anthropy. “If you can write you have
almost all the skills you need to make a
Twine game. And a lot of people can write.”
Anthropy further cited an hour-long Twine
game jam she held in Toronto, where the
diverse crowd of fi rst-time game makers
included a number of senior citizens.

On her blog, Anthropy posted
a list of notable Twine games
that’ve sprung up during the recent
renaissance. ”I’m not cherry-picking
much at all,” she said. “[There’s] a
really noticeable majority of women,
queer, gender-nonconforming
authors. I mean, it’s basically an
inversion of most game-making
communities in the mainstream,
which is really interesting. It looks
genuinely different.”

“Genuinely different” is a good way
to describe both rat chaos and howling
dogs, two key games from the new scene.
J Chastain’s rat chaos (monsterkillers.
com/games/2012-07-18%20Rat%20
Chaos/ratchaos.html) begins under the
pretenses of a typical text adventure, but
its stereotypical IF commands become
increasingly nonsensical as the narrative
transmutes into a soul-baring, fourth-
wall-breaking monologue from the author.
Porpentine’s howling dogs (aliendovecote.
com/uploads/twine/howling%20dogs.
html), meanwhile, uses beautifully
evocative language to weave a loose tale
that may or may not be about lost love, VR,
and day-to-day life in captivity. ZORK these
games are not.

Other sidelined, would-be games
creators are noticing. “[Releasing RAT
CHAOS] was like raising a small fl ag,” said
J Chastain. “I think it’s helped talk to some
people. Wherever you are, if you’re queer
and feeling isolated and invisible, you can
get on the web and start putting fl ags up
and demonstrating that you exist.”

—Alexandra Hall
A Twine project.

wall-breaking monologue from the author.
Porpentine’s howling dogs (aliendovecote. h h

http://gimcrackd.com/etc/src/
http://auntiepixelante.com/twine/
http://monsterkillers.com/games/2012-07-18%20Rat%20Chaos/ratchaos.html
http://auntiepixelante.com/twine/
http://monsterkillers.com/games/2012-07-18%20Rat%20Chaos/ratchaos.html
http://monsterkillers.com/games/2012-07-18%20Rat%20Chaos/ratchaos.html
http://aliendovecote.com/uploads/twine/howling%20dogs.html
http://aliendovecote.com/uploads/twine/howling%20dogs.html
http://aliendovecote.com/uploads/twine/howling%20dogs.html

0
0

6
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

PUBLISHER Rad Dragon
DEVELOPER Rad Dragon
RELEASE DATE November 8th, 2012
DEVELOPMENT TIME 3.5 months
DEVELOPMENT BUDGET $17,996.24’s worth of
rent, ramen, and resources
OF LINES OF CODE IN THE GAME 14,638
A FUN FACT SHOVE PRO was originally
prototyped for a USC game jam where the
theme was “shadows.” The judges called the
game’s use of theme “tangential bullshit.”

006
E D U C AT E D P L AY _ J a n u a r y 2 0 1 3

Alexandra Hall: Has the game education landscape changed a lot
since you originally shopped around for a school?
MIKE SENNOTT: Games education has certainly grown in popularity,
so there are programs in more places, and you probably won’t
get as many weird looks for spending money on a games degree.
It is unambiguously awesome that more people are getting the
chance to develop their skills and create something they believe
in, but as a result it’s going to get increasingly diffi cult for a
student to stand out in the fi eld.

AH: Are you satisfi ed with how USC’s program prepared you for
“real-world” development?
MS: Defi nitely. USC’s grad program is very focused on getting out
there and making stuff, so we learned practical development skills
such as coding, iterative design, leadership, and scoping down.
But maybe the most helpful thing we got out of the program was
the culture of getting stuff done. We could see our classmates
producing shockingly good work in very little time, and we knew
that we had to do our best instead of psyching ourselves out. I
think carrying that attitude with us is one of Rad Dragon’s main
advantages. At big companies there’s a lot of waiting on other
people or pushing for approval, but as indie devs we have no
excuses not to get things done. I think USC has prepared us to
take full advantage of that potential for drive and agility.
TEDDY DIEFENBACH: Mike and I were both fortunate to work in the
industry before we joined the Interactive Media Division for
our MFAs, so we had that perspective going in. When we decided
to form Rad Dragon instead of taking jobs after school, we
didn’t see any reason why we couldn’t carry the culture Mike
mentioned into our company. While we now have to be cognizant
of business planning and strategy, it’s very important to us that
we leave room for the experimentation and fast pace that the IMD
cultivated for us.

AH: Both of your thesis projects feature interactive story elements.
Was that easier to get off the ground in academia?
TD: Before we’d had time to prototype and develop our thesis
games, it would have been diffi cult to convince a big company
to invest in time to experiment with QUICKSILVER’S procedural
cartoon storytelling, and it would be hard to prove with just a
PowerPoint and some concept art that people would connect like
they have with THE MOONLIGHTERS, a heist game about washed-

up 1950s crooners. USC’s MFA program insisted that we set
out to contribute something valuable and original to the game
industry. But the freedom of academia and indie development is
a double edged-sword. No one stops us from trying these things,
but we have tighter resources. For our academic theses and our
games at Rad Dragon, we’ve had to be game designers, coders,
writers, producers, and pitch men. We can do whatever we want,
so long as we fi nd a way to make it happen.
MS: At USC, I was able to spend much of a year working on
QUICKSILVER, scrap it, learn from it, and spend my thesis making
a much better-designed iteration. Only in academia, where the
emphasis is on experimentation and learning, can you take that
sort of risk without fearing failure. In school, if your grand game
idea doesn’t turn out like you’d planned, you won’t go bankrupt
like an indie might. You can write a paper on why it didn’t work,
and the interactive fi eld can still profi t from your time.

AH: Given your trajectory, might a big studio situation cramp your
style?
TD: It’s never really been about Big versus Indie to us. Our friends
at L.A. triple-As like Naughty Dog and Insomniac blow our minds
with their work! There are just some game ideas that we have a
burning desire to create together, and the only way we could was
to take the fi nancial risk ourselves and form Rad Dragon. We love
the freedom to do what we do—build games that entertain, but
incorporate exciting original concepts in gameplay and narrative
design. With any luck, we’ll be able to continue forward with our
more ambitious ideas and grow Rad Dragon into a studio that will
be making games for all eternity. —Alexandra Hall

 November 8th, 2012
DEVELOPMENT TIME
DEVELOPMENT BUDGET
rent, ramen, and resources

 Rad Dragon
 Rad Dragon

RELEASE DATE November 8th, 2012
DEVELOPMENT TIME
DEVELOPMENT BUDGET
rent, ramen, and resources

J a n u a r y 2 0 1 3

 Rad Dragon
 Rad Dragon

RELEASE DATE
DEVELOPMENT TIME

Shove Pro
http://raddragon.com/shove-pro

MIKE SENNOTT AND TEDDY DIEFENBACH COMPRISE RAD DRAGON, A NEW INDIE

STUDIO WHICH RECENTLY RELEASED SHOVE PRO FOR IOS. THE USC GRADS

ARE NOW WORKING TO FURTHER DEVELOP THEIR RESPECTIVE THESIS GAMES,

QUICKSILVER: INFINITE STORY AND THE MOONLIGHTERS. I CHECKED IN WITH

THEM TO HEAR THEIR THOUGHTS ON USC’S GAME PROGRAM AND OF DEV LIFE

AFTER GRADUATION.

http://raddragon.com/shove-pro

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
0

7
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

Who Went Where

w The Secret World‘s creative director, RAGNAR TORNQUIST, has parted ways with
Funcom to create a new independent studio following the premium MMO’s rocky
launch. Thanks to a revenue-share deal with Funcom, Tornquist’s acquired the
rights to create a sequel to his adventure game classic, THE LONGEST JOURNEY.
Tornquist will also remain in an advisory role for The Secret World.

w SIM DIETRICH has joined free-to-play mobile MMO developer Machine Zone. Dietrich
comes from OnLive, where he managed the platform, UI, engineering and game
performance teams, and is credited with the invention of several patented
technologies during his previous engagements with Intel and Nvidia.

w NEIL YOUNG AND BOB STEVENSON, two of the original founders of mobile games company
Ngmoco, have left the company to move on to other opportunities. Founded in 2008,
the company was bought out by Japanese social games giant DeNA for $400 million in
2010. Young and Stevenson are said to be “moving on to our next adventure.”

w Mobile games company PlayFirst has hired PAUL CHEN as vice president of business
development. Chen comes by way of Papaya Mobile and Nvidia, where he was
product manager for the graphics company’s Tegra line of mobile processors.

New Studios

u MICROSOFT’S OPENED A NEW STUDIO in Vancouver that
will focus on creating triple-A games for the Xbox
360: Black Tusk Studios. Drawing a comparison
to HALO, studio manager Mike Crump says
that the studio is “working on Microsoft’s next
big entertainment franchise … We are building
something from the ground up.”

u Perhaps infl uenced by local fi nancial incentives,
TAKE-TWO IS MOVING its 2K West QA Testing studio
from Northridge, California to downtown Las
Vegas. The new location will likely support
upwards of 150 employees.

u Since being laid off from Reverge Labs, the
development team behind SKULLGIRLS has
formed a new studio, LAB ZERO GAMES. Still working
with publisher Autumn Games, Lab Zero will
continue supporting its hardcore 2D fi ghter.

PATRICK MILLER: You’ve been in
the biz for a while, fi rst at EA,
then jumping into free-to-play
with ngmoco before that was an
industrywide trend (well, in the
U.S., anyway). What prompted
the hop to KIXEYE?
CARYL SHAW: KIXEYE is starting
to move further into mobile,
beginning with the launch
of BACKYARD MONSTERS:
UNLEASHED, and I just saw
a huge opportunity here.
Developing midcore games
for mobile is a door that is
just now opening, and given
KIXEYE’s dominance with
synchronous PvP games on
Facebook, I think this is a
great moment to make the
shift and bring our class of
social games to mobile. I was
looking for a company that had
a really strong focus on quality
where I could contribute at a
fundamental level—and help
drive the strategy. Plus I knew
a few people here and jumped
at the chance to work with
them again.

PM: Be honest—it was the
recruitment video on YouTube,
wasn’t it? Or those meme
posters on BART?
CS: Heh. I actually loved the
video. Most people who know
me at all will tell you I’m not

a terribly shy fl ower, and
it seemed like a company
where my vibrant and creative
personality would fi t in well.

PM: Toward the end of 2012, we
saw something of a downturn
in the social games biz, most
notably punctuated by Zynga’s
layoffs and exec departures.
Why get into social games now?
CS: I believe social is here
to stay, but I think it has to
be done in a way that feels
meaningful for the gamer. My
goal is to provide players ways
to compete and collaborate
with each other through
games. Social interactions in
games aren’t going away, but
will defi nitely need to evolve.
Whether you are playing with
people in your social graph
(people you know) or in your
interest graph (people who
enjoy the same types of games
that you do) opens up new
ways to promote collaboration
and competition. I think true

competition has been missing
from social games, and I can’t
wait to see where that goes in
the next few months.

PM: You’ve been out of the
traditional console/PC
packaged-product side of the
biz for a while. Do you miss it?
CS: Watching the videos of the
game footage for the new
SIMCITY makes me super
homesick for my time at
Maxis. I would have loved to
contribute to that game, but
overall I would not trade my
career shift to mobile even for
that. I’m not sure I could spend
fi ve years working on one title
again, but I love those guys
for doing it. They are making
a Maxis game I’ll get to play
having never had one bug
assigned to me! But frankly, the
fast-paced, server-based
mobile world appeals more to
my ADD side—there’s always
something shiny and new to
explore and make the most of,

plus I’m learning new stuff all
the time.

PM: What’s the next big game
dev market trend that we
(and everyone else) should be
paying attention to?
CS: I think the customers to
watch are those that just
started playing games in the
last year or two—the casual
gamers who don’t think of
themselves as gamers. In
the not-so-distant future,
those folks are going to start

having higher
expectations
from their
game
experiences.
They’re going

to mature as gamers and
consumers, and it’s our job to
creatively address those new
expectations and make truly
innovative games that continue
to foster their newly found love
of gaming.

—Patrick Miller

BY THE END OF 2012, IT SEEMED LIKE EXPERIENCED DEVELOPERS AND
EXECUTIVES ALIKE WERE LEAVING SOCIAL GAMES JUST AS FAST AS
THEY HAD BEEN JUMPING IN AT THE BEGINNING OF THE YEAR�WHICH IS
WHY WE AT GAME DEVELOPER WERE INTRIGUED TO HEAR THAT FORMER
MAXIS/EA/NGMOCO PRODUCER CARYL SHAW WAS HEADING OVER TO KIXEYE
FOR AN EXECUTIVE PRODUCER GIG. SHE TELLS US WHY SOCIAL IS
STILL THE PLACE TO BE.

gj 007
G O O D J O B _ J a n u a r y 2 0 1 3

Shaw’ll Ready For This?
CARYL SHAW HEADS TO KIXEYE

0
0

8
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

Front
Line
AwArds
2012

t h e 1 5 t h a n n u a l G a m e d e v e l o p e r

008 fla
f r o n t l i n e awa r d s _ J a n u a r y 2 0 1 3

For 15 years, we at Game Developer have continued to honor the best development tools in the business with our
Front Line Awards. Here’s how it works: we started with an open nomination process where readers and at-
large community members could nominate their favorite tools. From there, the Game Developer and Gamasutra
editors, with a little help from our respective advisory boards, sorted through those nominations to come up with
a list of finalists that we put to a community vote to determine which tools come out on top.

this year’s crop of Front Line Award winners includes a few repeat winners and a few new members to the
club, which is not so surprising, considering how our industry somehow manages to simultaneously change and
yet stay the same. Havok Physics, Pro tools, and Unreal engine 3 had repeat wins this year, while Luxology’s
modo 601 managed to unseat Autodesk 3ds Max for best Art tool, and Bugzilla finally won a much-deserved
nod in the Programming category. Also, we nixed the networking category in favor of a Best Free tool category;
as more and more game developers start working in small and scrappy indie studios, it becomes ever more
important for devs to make sure they can work with tools that don’t break their (nonexistent) budgets.

Congratulations to the winners! Here’s to another year of great games—and the tools to build them with.
—Patrick Miller

0
0

9
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

hall of famE

Unity 3D
U n i t y t E c h n o l o g i E s u n i t y 3 d . c o m

0
0

9
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

in the early part of the decade, the game industry
planted the seeds of change. High-quality
development tools, historically hidden behind high-
cost barriers, were being opened up to the masses
for free or cheap. Along with this democratization of
tools came an increased focus on speed and ease of
development. Fast-forward to 2012: tools across the
board are easier to obtain and use, which has enabled
the indie sector’s rise to prominence, and one of the
most important tools to come out of this era is unity.
out of this storm of experimentation, unity bubbled
to the top, offering an unprecedented mix of power,
value, and ease of use that has put new faces in
the game development scene while simultaneously
offering established developers a compelling tool.

Speed of development is a key factor in making games, and
this is arguably unity’s strongest suit. coding for unity is
simply a nice experience; it has a clean, component-based
architecture that is both powerful and flexible. Since it’s
built on mono, those who’ve had run-ins with .nEt will be
partly familiar with it, while its JavaScript support eases
the transition for web developers. the code side of things
meshes well with the unity Editor, which provides many of
the commonly used development tools (level editing, asset
importing, animation tool, particle designer, and so on).

unity also has a lot of power in the non-coding tools, and
very few barriers to getting your hands dirty when you need
coding support; the whole package plays nicely together. this is
a powerful combination that allows you to fluidly move between
using code-based solutions and tool-based solutions without
struggling against unity. the editor itself can be modified
through code, allowing you to tailor your own tools, which is
a boon if you need to provide extra support for non-coders
that integrates with the rest of unity. the broad deployment
options that unity provides are also a big time saver if you’re
interested in cross-platform releases, or if you need to
standardize engineers with disparate skills onto one toolset.

unity’s potential for speedy development makes it
particularly useful for small studios and indies, especially
because it offers a free basic license and reasonable pricing

for its pro and platform licenses. i worked at a small ioS
independent studio on a game called Grem LeGends, and
one of the engineers didn’t know native code—but we needed
all hands on deck. We were all pretty well-versed in c#, had
a little bit of unity experience, and didn’t have time to build
a bunch of tools from scratch, so we chose unity. With unity
we got the game done on a tight schedule, which would have
been tough if we had taken a different production path.

once i got comfortable using unity, i started using it as
my standard tool for game jams as well. i used it at the “What
Would molydeux?” jam, and was able to finish the game coding
solo while still going home and getting some sleep each night.

We would be remiss if we didn’t acknowledge that part
of what makes unity special is the community of unity devs.
there are a lot of people using unity, which means it’s easy to
share knowledge with and support other devs. the unity team
also provides the community with the Asset Store, which
allows developers to distribute plug-ins that they’ve created.
Beyond providing a means for developers to sell their tools,
it’s a centralized repository of tools, making hunting for what
you need not quite as painful.

unity is still a generalized engine, which means
compromises that keep it from being a cutting-edge tool,
but for many developers the tradeoff is well worth it. Plus,
it abstracts away much of the extremely technical work
involved in reasonably efficient rendering, opening the gate of
development to those who aren’t direct3d/openGL gurus. For
studios operating on the bleeding edge, or who need different
workflows than what unity has to offer, it can still be valuable
for quickly prototyping, iterating ideas, and tinkering.

unity reflects the change that has been occurring for the
past several years in the industry. it’s approachable, both from
a financial and technical perspective, and offers excellent
results for the amount of effort you put into it. What’s more,
unity thrives in the diverse ecosystem of devices that game
developers need to address, and with its swift development
speed, it can have a place in all manner of studios, from the
four-person team at a game jam to the triple-A juggernauts.
unity has opened the doors of game development for many,
and we wouldn’t have some great games without it.

*** Elijah O’Rear is a software engineer at Midverse Studios.

http://UNITY3D.COM

0
0

10
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

010 fla
f r o n t l i n e awa r d s _ J a n u a r y 2 0 1 3

3D artists in game development often
need to use several different software
packages to create assets for a modern
console game. A video game artist
has to adapt to a pipeline of tools and
applications that have different user
interfaces, workflows, and file formats.
As a result, today’s game artists are
asked to create next-generation art
using last-generation tools that are
more like a collection of separate
ideas rather than a complementary
ecosystem. With the release of modo
601, Luxology has created a compelling
modeling and rendering tool that
seamlessly incorporates easy-to-
use character rigging, texturing, and
shaders—which is strangely unique
among 3D software packages.

I first encountered modo while looking for
ways to improve the quality and speed of
character production on Golden Axe in
2007—I picked it up to edit the UVs on my
character models more easily than I could
with comparable applications at that time. I
gradually found myself using modo more often
for other tasks, such as modeling and texture
rendering and cleanup, as many of the tools
were the same ones I had used to edit UVs.

Fast-forward to spring 2012 with the
rather timely launch of modo 601. With its
implementation of Non-Photoreal Rendering
(NPR) shaders and character rigging tools, I am
able to realize the promise of creating an entire
game character from beginning to end, starting
from concept art, to real-time content, to a
polished high-resolution model and renders
that fully represent what I had imagined when I
started on a character idea or design.

Typically, a game character requires two
models: a real-time mesh, and a more detailed
version of the same character that is used as a
source for texture maps to be applied to the in-
game model. The high-resolution model is often
generated in external sculpting applications, and
is mostly used only for texture or re-topology
reference—if someone needs a detailed model
for a rendered FMV or printed promotional

images, the artist will either make a new model
or just make do by rendering in-game assets
and touching them up in Photoshop. The end
result looks different (sometimes dramatically
so) from the actual in-game character.

For Sly Cooper ThieveS in Time, our goal
was to make the in-game assets faithfully
represent the original signature style of the
classic Sly Cooper characters, while at the
same time updating their look for a modern
console game. With modo, I was able to create
both the in-game and high-res models within
a single scene by using its sculpting tools to
convert the low-res model to a highly detailed
Sub-D model. Since I used modo for the high-
res model, I could apply the same textures
created for the in-game model, quickly add
a skeleton, and then use the PoseTool to
position the characters into various poses
that show off their personality or provide
compositional narrative.

The last step was to render using a
combination of cel shaders, material presets,
and textures to get a rendered, slightly stylized,
painterly look that matches to the overall style
of the game. Since I had been reusing the same
high-res models used to create the in-game
geometry, the rendered images accurately and
consistently represent the game characters and
their subtle style and form.

Thanks to modo 601’s new shader
and posing tools, we were able to rapidly
provide high-quality images to Sony for their
marketing efforts; indeed even our quick
lighting and pose tests were sometimes
mistaken as final art from time to time.

*** John Hayes is a senior character
artist at Sanzaru Games.

art

modo 601
l u x o l o g y
LU x o Lo g y. c o M / M o D o

0
10

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

http://LUXOLOGY.COM/MODO

0
0

11
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

 fla 011
f r o n t l i n e awa r d s _ J a n u a r y 2 0 1 3

middleware

Havok Physics
H a v o k h av o k . c o m / p r o d u c t s / p h y s i c s

the SaintS Row series has become
known for its over-the-top gameplay, and
SaintS Row: the thiRd is no exception. it
shouldn’t be surprising, then, that under
the hood there is some unusual code to
make it all happen. Fortunately, this isn’t
a problem for a physics engine like havok.
We’ve been able to rely on havok physics
to take the craziness we throw at it and
have it produce something realistic. For
us, it’s not just about the features that
the physics engine provides, but also the
ways we can customize it and extend it.

making a world as large and dense as that of
SaintS Row: the thiRd inside the memory
limits of current consoles is challenging.
although havok provides multiple options for
terrain collision representation, we chose to
implement our own by extending one of the
provided options with our own storage scheme
custom tailored to our usage needs. the
result was a fast and very memory-efficient
representation of our terrain collision. havok
provided a solid foundation upon which we
could then expand.

vehicles are very important in SaintS
Row games, so we are constantly striving to
provide better vehicle physics. once again,
we used the havok vehicle physics kit as a
foundation and then customized and built on
top of it. We were able to implement our own
drifting physics by changing the way vehicle
friction is simulated; make our own tank
turret physics by combining havok constraints
and motors with our vehicle weapon system;
and build all kinds of watercraft, airplanes,
helicopters, and hybrid vertical takeoff or land
(vtoL) vehicles by building on top of havok.

Even with everything it already does, havok
physics is always improving. New features,

optimizations, and fixes are constantly being
developed, which we were able to take
advantage of between SaintS Row 2 and
SaintS Row: the thiRd. as developers
experienced with supporting both playstation
3 and Xbox 360 can attest, getting good
performance across platforms can be
difficult and time consuming. Fortunately,
havok continued making improvements to
the physics engine’s cross-platform support
so that we could focus on other details.

Finally, havok support is top-notch.
Whenever our over-the-top physics ran
into over-the-top bugs, havok’s support
team helped us track down the issue. their
knowledgeable team and excellent support
tools, such as the havok visual debugger,
made a big difference when we were dealing
with difficult bugs. Beyond just helping when
asked, they also contacted us to inform us
of their future plans for the engine and ask
for feedback on what to improve for future
versions. on occasion, we even had them on-
site for some hands-on attention toward the
end of a project.

We’ve been using havok physics for
several years, and it just seems to be getting
better and better. more and more of the
cross-platform differences are handled
behind the scenes so that we don’t have to
worry about them like we used to. interesting
new features are being added, so that we
can expand upon them to make crazy new
games. When those games run into equally
crazy problems, it’s comforting to know
havok support is there for us. SaintS Row
has really benefited from its use of havok
physics, and we look forward to using them
in the future.

*** Shawn Lindberg is a senior
programmer at Volition Inc.

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
11

http://HAVOK.COM/PRODUCTS/PHYSICS

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
12

audio

Avid Pro Tools
a V i d t e c h n o l o g y
av i d . c o m / U S / p r o d U c t S / fa m i ly / p r o - t o o l S

012 fla
f r o n t l i n e awa r d s _ J a n u a r y 2 0 1 3

When it comes to digital audio, pro tools is considered the standard
digital audio workstation (daW). While pro tools was a must-have in every
major recording studio around the world by the mid-1990s, it took a little
longer to find acceptance among game studios due to its high price tag.
But these days just about every publisher i’m aware of uses pro tools, as
well as just about every major game-centric audio studio.

the main edge pro tools has over just about every one of its competitors is
reliability. When you are faced with linking pro tools to your game engine to process
hundreds of thousands of lines of dialogue in a complex chain of integration, you
can’t afford to lose data during a recording session or an export. for example,
i have used pro tools in conjunction with both commercial (Gallery Software)
and proprietary voiceover software that will automatically trim voice recordings,
perform a spectrum analysis, and based on scripting, correctly process and name
vo takes. many daWs tend to stumble, crash, and hang the system from time to
time. if your pro tools system is set up properly from the get-go, the chances of it
crashing are almost zero—and when you’re recording expensive star voice talent,
rock-solid performance is a must.

When it comes to dealing with recording a hundred orchestral players and foley
sound sessions, where so many people are working that your hourly rate starts going
through the roof, you need a daW that doesn’t let you down. Whether recording down
the road or at abbey road, most likely you’ll find a pro tools system connected that
the engineers “just don’t have to worry about.” Unless you are recording in the field
with a Sound devices or Nagra system, pro tools will be there.

in addition, pro tools has made an effort to be reachable to the pc user as well
as the budget studio, so if you’re looking for something in the same family as the
huge studios, opt for pro tools Express or pro tools SE with an mbox interface.
When you decide your wallet and your needs require the top end, it’s a simple
matter to upgrade to pro tools|Hd.

another thing pro tools has going for it are its rtaS and aaX plug-ins, which
are widely regarded as the highest quality in the business from amp simulation to
compression. there are also a great deal of virtual instruments available.

i’m waiting for the day pro tools will directly connect with game hardware and
software to create one pipeline from asset creation to integration. Hopefully, that
day isn’t too far away.

*** Alexander Brandon is the president of Funky Rustic, an audio
outsourcing group, and vice president of the Game Audio Network Guild.

http://AVID.COM/US/PRODUCTS/FAMILY/PRO-TOOLS

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
13

Whether you’re a student trying to get into
game development, an indie developer
aiming to make a splash in the PC or
mobile markets, or a studio looking to
develop the next big thing on consoles,
one thing that should definitely be high on
your radar is Unreal Engine 3.

Available under multiple licenses, starting
with the most affordable Unreal Development
Kit, you can create high-quality, standalone
commercial titles, using the same tools
that Epic and its licensees used to create
games such as Gears of War, Mass effect,
Borderlands, and InfInIty Blade.

I was first introduced to Unreal 3 in 2007
through a university degree that included
creating mods for roBoBlItz and Unreal
toUrnaMent. When a few of us were hired
by a large studio in 2008 to work on an
unannounced Unreal Engine 3 game, the
tools available to us as full licensees were
essentially just a more up-to-date version of
what we were already familiar with. During
pre-production, design specs could be turned
into fully fledged prototypes in a matter of
days, due to Unreal’s mature, efficient toolset.

When I later worked on other games at
the company using their own proprietary tech,
the tools were a mess. I learned to appreciate
the enormous difference between tools that a
programmer can use to get the job done, and
tools that artists and designers need to use
every day to effectively do their jobs.

Good tools can be the difference
between a game that gets finished on
time and under budget and one that gets
stuck in development hell. After seeing the
damage that bad tools could do to a project,
when I began working on my own games
again in early 2009, I went straight back
to working with Unreal. With two decades
of experience being at the front line of
game technology, an expansive portfolio
of highly successful triple-A games and a
growing list of independent releases via the
UDK, new updates every month, and good
documentation, it’s pretty clear that Epic
knows what it’s doing when it comes to
developing an effective engine.

From a programming perspective,
there are a couple of caveats to be aware
of. The UDK will only give you access to a
higher-level scripting language known as
UnrealScript, not the lower-level native
C++ code that runs the engine beneath
it. UnrealScript is like a user-friendly
combination of C++ and Java, with a focus on
development simplicity and power over raw
execution speed. Don’t let that deter
 you, though.

Using nothing but UnrealScript and
the Unreal Editor, I managed to create
antIchaMBer, an award-winning non-
Euclidean psychological exploration game,
complete with custom physics, obscure
spatial navigation rules, and a unique
visual style made up of multiple rendering
techniques, edge detection, and a custom
inverse lighting system. I did all of the
programming, design, and art myself, and
even won the award for Technical Excellence
at the 2012 Independent Games Festival,
without ever having to go near any of the
lower-level native C++ code.

Several successful independent titles
have been developed using the Unreal
Development Kit, such as the Ball,
sanctUM, and haWken. Other games,
such as dUnGeon defenders, began
development using the UDK and then
upgraded their license when they made
the transition to consoles. One particularly
interesting case was QUBe, which was
released on Steam at the start of 2012 by a
team with no programming experience.

One of the most important aspects of
developing games is knowing what your
strengths and weaknesses are. Some people
like having control over every single detail, but
to me, there is nothing more daunting than
staring at a blank slate, trying to work out
where to start. By using Unreal and leaving the
core foundational work in the hands of experts,
I can just focus on working on the things I
actually care about. I’m interested in exploring
the boundaries of game design, but I hate
reinventing the wheel.

*** Alexander Bruce is an independent developer
and the creator of antIchaMBer.

engine

Unreal Engine 3
e p i c g a m e s U n r E A l E n G I n E . C O m / U D K

 fla 013
f r o n t l i n e awa r d s _ J a n u a r y 2 0 1 3

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

http://ENGINE.COM/UDK

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
14

free tools

Blender
t h e B l e n d e r f o u n d at i o n (o p e n s o u r c e)
b l e n d e r . o r g

014 fla
f r o n t l i n e awa r d s _ J a n u a r y 2 0 1 3

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

blender is a free, open-source 3d art suite with a
combination of powerful modeling, unwrapping, and
rendering tools that is growing in notoriety as its user
community demonstrates that you can still make
professional-quality movies and game art with free tools.

I first started working with blender six years ago, while
working toward my classical art degree, and felt an affinity
with computer graphics that led me to spend the rest of my
university years learning to use Softimage XSI and 3d Studio
Max. blender’s accessibility remains one of its strong points
and is helping artists around the globe to express themselves
in new ways.

our development studio (nine dots) was founded on a
small budget, so we opted to use blender instead of paying
$5,000 per head for commercial 3d software. As the studio’s
founder started gathering a team, my previous experience
with that software was a strong asset and I was hired. I’ve
used blender ever since, and new nine dots artists are
taught to use it when they start out in our company.

After a few weeks of adaptation—getting used to the
interface and customizing our keyboard shortcuts—the 3d
artists at nine dots were able to reach the same production
speed they had on the software they were used to. In my
experience, I have actually found blender to be far faster
than any of Autodesk’s products in terms of modeling and

unwrapping, at least for the low-poly models required for
video games.

I also made good use of my graphics tablet in blender while
working on our first game, Brand. Using the Poly Paint mode,
I drew the lights and shadows on the 3d mesh itself before
baking the result in the diffuse texture. That single feature
I found while exploring the software has helped us obtain a
painterly look for our game. other features use the tablet, such
as the newly implemented sculpt mode, which lets the artist
manipulate the geometry in a manner similar to Zbrush.

After we released Brand on Xbox 360 and PC, we
started work on a more ambitious project with fully detailed
characters. once again, blender has proven to be a great tool
for creating an elegant facial geometry and for animating the
bodies and faces of our human (and nonhuman!) characters.
We also used blender to edit some of our trailers and
gameplay videos; since the video editing tool is integrated
with the rendering software, the production pipeline is
streamlined, saving us some precious time!

In short, blender is an accessible and customizable tool
that can be optimized to greatly increase production speed.
For video game creation, I can speak from experience that
blender’s modeling and unwrapping tools are on par with
those of its costly competitors. I’m eager to see it grow as it
refines its strengths and irons out its last kinks!

*** Etienne Vanier is the lead artist at Nine Dots Studio.

http://BLENDER.ORG

0
15

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

engine

Unreal Engine 3
e p i c g a m e s U n r e a l e n g i n e . c o m / U d k

 fla 015
f r o n t l i n e awa r d s _ J a n u a r y 2 0 1 3

Bugzilla isn’t the sexiest product in the world—after all, it’s bug-tracking
software. But it’s one of those required tools in our development arsenal,
one of those tools that we all rely on during the most critical moments of
the development process.

For me, Bugzilla was particularly convenient while i was working with a bilingual
team in china. in this situation, we had a group of about 20 developers of all
disciplines working on building a free-to-play online Pc game. in our case, Bugzilla
was efficient, quick, and easy to learn and use.

Bugzilla has some key features that i found essential in our development
process. The ability to mark or update multiple bugs simultaneously was a workflow
convenience i could not live without. i also appreciated the tracking reports, which
gave me an up-to-date chart that showed how quickly we were closing bugs off
our list, which users were behind in closing their issues, and how many bugs of
each priority category were remaining. This was useful for feature tracking as well,
because we could earmark requests with their own category, which could then serve
to roll up new features for the team to implement.

Bugzilla’s tracking features are complemented by a whole host of other features that
contribute to its utility and usability. its email notifications allowed me to immediately
react to updates and communicate build-testing results back to the team within shorter
timeframes. its automatic duplicate detection feature (a form of autofill) lets the user
find potential bug duplications before they are committed to the database. Time tracking
allows the team to set deadlines and test against user time estimate accuracy.

Perhaps the most useful part about Bugzilla, though, is that it’s a free, open-
source product. This cannot be understated. in an industry that is now party to an
enormous host of smaller developers working with lower budgets to make their
products, Bugzilla is a welcome respite to the incoming tool costs associated
with new cloud subscription models that have become the norm for many
development toolsets. Because of my positive experience working with Bugzilla, i
now automatically look toward open source solutions to our tool problems before i
consider the licensed per-seat solutions that are currently on the market.

To that end, i salute the Bugzilla team, as well as everyone else who is offering
their time to make the product even better, and hope that we in the game industry
do our part to keep it alive well into the future.

*** Carey Chico is a game industry veteran and a member of the Game Developer advisory board.

programming

Bugzilla
m o z i l l a f o u n d at i o n (o p e n s o u r c e)
B U g z i l l a . o r g

http://BUGZILLA.ORG

P
H

O
TO

S
C

O
U

R
TE

SY
 O

F
G

A
M

E
D

EV
EL

O
P

ER
S

C
O

N
FE

R
EN

C
E

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
16

With planning for March’s GDC 2013
in San Francisco now underway,
the show’s organizers have debuted
more than 20 sessions via the initial
Schedule Builder, with hundreds
more due over the next few weeks.

As always, prospective GDC speakers are
working closely with the advisory board
members, who are individually mentoring
talks through multiple submissions
stages and into the offi cial program. As
part of this process, GDC 2013’s very fi rst
announced talks are now available online
via its offi cial Schedule Builder, with
highlights to be further explored soon,
including a “poster session” on Metacritic
scoring, plus talks from Double Fine,
Frictional Games, and Microsoft.

Alongside the Schedule Builder, GDC
organizers have also added a pair of
roundtable talks focusing on managing
art teams and incorporating designers
into your production processes. Unlike
GDC’s standard lectures and panels,
these roundtable sessions allow
attendees to sit down with the host to
engage in face-to-face discussions, share
their personal experiences, and learn
from their fellow developers.

First, Keith Self-Ballard, a art
director at Blizzard Entertainment on
the company’s unannounced next-gen
MMO, will host the “Art Director and Lead
Artist Roundtable,” which will provide an
open forum for artists and art directors
to exchange ideas regarding how studios
should manage, lead, and direct their
art teams. This session will address the
most pressing issues facing today’s game

artists, and attendees will walk away
with a better understanding of how to
overcome these challenges.

In the second new roundtable, storied
developer and University of Advancing
Technology professor David Wessman (TIE
FIGHTER, THE CHRONICLES OF RIDDICK:
ESCAPE FROM BUTCHER BAY, SAINTS ROW)
will help attendees look at how designers
should interact with developers from
other disciplines. His roundtable, dubbed
“Whose Design Is It Anyway? Game
Designers and Development Teams,”
will help designers and other developers
understand each other’s roles, improve
cross-studio communication, and create
a more collaborative atmosphere across
their entire studio.

Both of the above sessions will
take place as part of GDC 2013’s Main
Conference, which is open to All Access and
Main Conference pass holders. Discounted
Early Bird registration is now open on the
show’s offi cial website, and GDC 2013 itself
will take place March 25-29 at the Moscone
Center in San Francisco.

Be sure to keep an eye out for even
more updates on GDC 2013 in the coming
weeks, as the show’s organizers have plenty
more talks to announce for the upcoming
event. For all the latest information on
the Game Developers Conference, visit
www.gdconf.com, or subscribe to regular
updates via Facebook, Twitter, or RSS. (GDC
is owned and operated by UBM TechWeb,
as is Game Developer.)

GDC 2013 DEBUTS SCHEDULE BUILDER,
HIGHLIGHTS NEW ROUNDTABLES

GAME DEVELOPERS CONFERENCE®

MARCH 25–29, 2013 MOSCONE CENTER SAN FRANCISCO, CA

No one can make a truly great game without fi rst understanding the basics of development, which
is why the next Game Developers Conference in San Francisco will feature a number of robust
tutorials to help attendees sharpen their essential skills.

GDC 2013’s organizers have debuted a pair of tutorials to help developers create better narrative
content, and understand the mathematic principles behind modern game programming.

In the fi rst tutorial, LucasArts lead narrative designer Evan Skolnick will return to GDC to host “Game Writing Fundamentals in a Day.” During
this session, he’ll provide a comprehensive primer for game writers, covering the basics of good story structure, character development, and
dialogue writing. Of course, developers in other disciplines will benefi t from this tutorial as well, as they will learn how to bridge the gap between
game writers and the rest of the development team.

The second new tutorial is another GDC favorite aimed at helping developers understand the foundation of modern game programming. The
session, titled “Math for Games Programmers,” will bring together a host of programming experts to cover everything from basic mathematic
principles to the complex topics every programmer should master.

Confi rmed speakers for this session include Jim Van Verth (Insomniac Games), Manny Ko (Imaginations Technologies), Gino van den Bergen
(Dtecta), Stan Melax (Intel), Squirrel Eiserloh (The Guildhall at SMU), Robin Green (Microsoft), and Graham Rhodes (Applied Research Assoc., Inc.).

BECOME A BETTER WRITER, PROGRAMMER WITH
GDC 2013’S SPECIALIZED TUTORIALS

http://www.gdconf.com

http://www.fdg2013.org

0
18

A couple of years ago Insomniac began work on its fi rst
cross-platform console title, FUSE, which would be
shipping on PS3 and Xbox 360. Insomniac’s Core (engine
and tools) team began rewriting its engine to support both
consoles, with a focus on improving iteration time during
the game production phase. Making the engine also run
on PC became part of the rewrite, because it would allow
us to cut iteration time by integrating our developer tools
more tightly with the engine. So we took this task as an
opportunity to rethink our tools architecture—and ended
up moving our development tools into the web browser. As
our engine director liked to point out, the World Wide Web
was here to stay, and we should stop ignoring it.

WORLD WIDE WHAT? Developing a browser-based toolset was
a new challenge for Insomniac’s Core team. We had limited
experience with browser technology and we faced a lot of
unknown factors, so we settled on a number of constraints to
mitigate the risks we were taking.

First, we decided to support only a single browser: Google
Chrome. Most of us used Chrome anyway, and it seemed well
supported, with a lot of debugging and diagnostic tools. Our
focus had to be on developing an engine and tools for shipping

FUSE, so we couldn’t become bogged down in the subtle
differences among browsers.

Next, we decided that the client and server code would
run on the same machine. We knew that we would be dealing
with large dataset, and we were concerned about the latency
involved in moving that information from a remote server to
a local client. This also enabled us to develop the server with
a standard use case of only a single connected Insomniac.
Although nothing we did precluded having multiple
Insomniacs connected to the same server, we weren’t going
to focus on multi-user support at this stage.

The other notable constraint was that asset formats for
FUSE were already being developed, and they were individual
fi les on disk, managed by revision control. The tools would
attempt to keep this paradigm unchanged.

INTRO TO LUNASERVER The tools UI runs in a web browser,
and is mostly written in JavaScript and HTML. We have
separate editors for working with levels, materials, animations,
and visual scripts, just to name a few. Our engine is also
embedded in the web browser as a plug-in, so the various
editors can use it to visualize the 3D assets. The editors tend to
be loosely coupled with the engine plug-in. ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

By Chris Edwards

f 000
C O L U M N _ J a n u a r y 2 0 1 3

g
a

m
e

 d
e

ve
lo

p
e

r m
a

g
a

zin
e

_
ja

n
u

a
ry 2

0
13

The web pages and engine plug-in are the clients
that make up the UI used by Insomniacs. The clients
communicate with a web server via HTTP to make changes
to data, and they poll the web server to discover when they
need to update their own views of the data. For this article
I will mainly focus on the design and development of the
web server. You can see a general overview of the different
components of our toolset in Figure 1.

The backend for the tools is a C++ web server built on
top of Mongoose (Reference 3), which we call LunaServer
(we love our moon references at Insomniac). LunaServer
provides access to fi les on disk, such as tools UI, scripts,
source assets, and built (platform-dependent) targets.

We built LunaServer to provide a RESTful interface
to its resources, though we are a little loose in our
implementation of REST. REpresentational State Transfer
(REST) is an architecture for defi ning web services
(Reference 1). Its principles include a client-server
architecture where the client manages state.

LunaServer does not directly monitor clients, though it
does keep a running log of the changes that are made by
clients (called a changelog). It also provides a scratch area
where loosely coupled UI elements can share information to

work together (called session data). Admittedly, this session
data is a deviation from REST’s design, but it does allow the
server to provide some useful features.

LunaServer spawns a number of threads on startup,
and those threads sleep until client requests start arriving.
When requests arrive, the receiving thread often handles
them immediately. Some requests need to be handled in a
nonconcurrent fashion, and these are placed into queues that
belong to various worker threads. The thread that received
the request then sleeps until the worker thread handles the
request, and then sends the results back to the client.

With LunaServer, clients can edit assets; access source
asset fi les, built asset fi les (with dependency tracking for
knowing when to build assets), and the revision control system;
and they can automatically convert data when the source
formats change. It also supports a unifi ed undo/redo system.

WORKING WITH ASSETS ON THE WEB Source assets
are individual JSON (JavaScript Object Notation) fi les on
disk. For those unfamiliar with JSON, it’s a rather commonly
used text format that describes objects in terms of key/
value pairs (Reference 4). The JSON asset fi les contain
various settings that are utilized in the game. Most of these ga

m
e

de
ve

lo
pe

r m
ag

az
in

e
0

19

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

020
B R I N G YO U R T O O L S T O B R OWS E R S _ J a n u a r y 2 0 1 3

0
2

0

settings are the properties that need to be tweaked during
development of the game.

The asset fi les do not contain binary data, though they will
have references to other fi les that store this type of information
(such as geometry or textures). When an Insomniac wants to
edit an asset, they check the text and binary fi les out of revision
control to make edits locally. Once all the edits are completed
and saved, the asset is submitted to the revision control system
and available to the rest of the production team.

The fi le system is monitored by a separate application
called LunaTracker. Changes to the fi le system are reported
to LunaServer, which tracks all the dependencies among
the fi les in a database (see Figure 2). As fi les change on
disk, builders are automatically kicked off to convert source
data into platform-dependent formats that are utilized in the
game. LunaServer also accumulates all of the JSON asset
fi les into a database.

We chose MongoDB (Reference 5) as our backing
database. MongoDB is a NoSQL database that arranges
BSON documents (Binary JSON documents, which are
easily created from JSON) into collections. If you come from
an SQL background, you can think of documents as rows
and collections as tables. Because all of our asset data was
already in JSON format, this was a simple transition for us
to make. MongoDB has a robust language for querying and
manipulating the data that it stores, all via JSON.

Insomniac’s data is organized into collections by
asset type. All the levels are in one collection, all the
materials are in another, and so on. A single asset fi le on
disk becomes a document (row) inside of the appropriate
collection in MongoDB. These are the “live asset”
collections and contain the most up-to-date changes to
each asset.

When clients manipulate assets, they directly make
those changes to the appropriate asset document in the
database (see Figure 3). Those changes can then be saved
to the backing JSON fi le and put under revision control.

Also, assets can be edited outside of the tools (in a text
editor, for instance, or by pulling a newer version from
revision control). LunaServer will be notifi ed of these
changes by LunaTracker, and LunaServer will update the
database.

To summarize, asset data is persistent between runs
of the tools, and is eventually built into formats used by
the game. Changes to an asset need to be refl ected in
all clients that are showing that asset. However, there is
another class of data necessary for designing an editor, and
we refer to that as session data.

Session data is shared among all the UI elements that
make up a single editor. It includes things such as the
current selection, which assets are currently open, and
other preferences specifi c to that editor’s view. Editors
create sessions when they are opened, and destroy the
sessions when they exit. When LunaServer is restarted, it
purges any outstanding session data (to account for clients
that crash without shutting down properly).

DESIGNING URLS FOR LUNASERVER When we fi rst
created LunaServer, it had a lot of very specialized URLs,
and all communication was carried out via the POST
method of HTTP. However, as the server has matured,
it has become more and more generic. We have moved
toward supporting fewer URLs, but making use of more
of the available HTTP methods (Reference 2). The
combination of the URL and the request method type tell
LunaServer how to act (see Figure 4).

The URLs are categorized into static content that
maps directly to a fi le on disk, and dynamic content that
requires some amount of processing or interacting with
a database. We identify dynamic content with a URL that
starts with “api.” Dynamic content includes asset, session,
and changelog items, which are the main focus of this
article. There are also URLs that allow raw database access
(mainly used for queries to locate assets based upon their

MongoDB

assets changelog sessions

Revision Control

LunaServer

File System

Builders LunaTracker

SceneEditor (3DView) Web Browser UI

settings are the properties that need to be tweaked during Also, assets can be edited outside of the tools (in a text

MongoDB

assets changelog sessions

Revision Control

LunaServer

File System

Builders LunaTracker

SceneEditor (3DView) Web Browser UI

Figure 1: LunaServer separates
the UI from the data storage.
LunaTracker monitors the fi le
system and reports changes to
LunaServer. LunaServer updates
MongoDB, kicks off builders, and
provides interfaces to the different
data storage elements.

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

g
a

m
e

 d
e

ve
lo

p
e

r m
a

g
a

zin
e

_
ja

n
u

a
ry 2

0
13

0
2

1
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

fi le names or other attributes) and revision control access.
See Figure 1 for a table of URLs and operations.

In addition to dynamic data, LunaServer provides access
to three main folders on the local disk, each designated by a
different URL prefi x. If the URL starts with “source,” it refers
to the root of our asset source tree; if it starts with “built,”
it refers to the directory populated by asset builder output;
and if it begins with “user,” it refers to the user preferences
directory. Clients can read or write to any of these directories.
Any other URLs are assumed to be part of the tools install
(static HTML, JavaScript, images, etc. that make up the tools
web pages themselves).

TEST CASE: OUR LEVEL EDITOR Let’s take a closer look
at Insomniac’s level editor for an example of how the tools
operate. When the level editor web page is opened, one of
the fi rst things it does is create a new session on the server.
This is accomplished via a JavaScript class that manages
communication with LunaServer.

This session is identifi ed by a randomly generated ID,
which is used to track the changes made by a particular
editor so that LunaServer can provide undo/redo functionality
to that session. The session ID is also a link between
disparate pieces of UI that make up the same editor. For
example, one of the main UI elements in the level editor is a
3D view of the level; the JavaScript code creates an instance
of our engine plug-in and passes along the previously
determined session ID, so that it is shared between the
JavaScript 2D UI and the C++ 3D view.

The Insomniac can now open a level, which consists of
searching for a level by name. There is a UI called the Vault
that serves this purpose, and it just uses LunaServer’s raw
database access to query for levels by fi le path. Once you fi nd
the level you wish to edit in the Vault, JavaScript records that
level asset into a list inside the session data and sends that
change to LunaServer.

LunaServer updates the appropriate session document
maintained in MongoDB by using MongoDB’s fi ndAndModify
functionality. This operation allows you to edit fi elds in a
document and fetch the previous values of those fi elds in a
single, atomic call, so LunaServer now has the new value
(in this case, the path to the level that was opened), and the
previous value (there was no level fi le open in this session).
These items are combined into a new document and added to
the changelog collection. This is the basis for the change to
propagate throughout the UI, and forms the building blocks of
the undo system.

Meanwhile, the 3D view is busy polling LunaServer and
will pick up that there was an entry added to the changelog.
The 3D view will notice that the entry in the changelog

matches the session ID that was passed to the view on
launch, and so it will inspect the change and discover that
there is now a level open, and it should be showing in the
3D view.

Both the 2D UI and the 3D view need to show information
related to the currently loaded level, so they both will request
the latest copy of the level from the server. The JavaScript
code will use its copy of the level data to fi ll out an Outliner
that shows a hierarchy of all the instances in the level,
organized by name. The 3D view will walk over the list of
instances in its copy of the level data and populate the 3D
view with the visible elements of a level, including models,
lights, and volumes.

The 3D view and 2D UI will continue polling the server
for changes at about four times per second. They are on
the lookout for any changes to their shared session data,

Revision Control
{
 lodDist: 15,
 geofile: “file.dae”
}

LunaTracker LunaServer
fi le.model

Model builder
Produces built fi le

for the game

asset.model
{
 _id:100,
 path: “file.model”,
 modified: “1/1/12 1:30pm”,
 saved: “1/1/12 1:33pm”,
 asset:
 {
 lodDist: 15,
 geofile: “file.dae”
 }
}

File synced to local disk File change picked up PUT: api/asset/model/100

Kick off model builder

Insert document into MongoDB

Revision Control
{
 lodDist: 15,
 geofile: “file.dae”
}

LunaTracker LunaServer
fi le.model

Model builder
Produces built fi le

for the game

asset.model
{
 _id:100,
 path: “file.model”,
 modified: “1/1/12 1:30pm”,
 saved: “1/1/12 1:33pm”,
 asset:
 {
 lodDist: 15,
 geofile: “file.dae”
 }
}

File synced to local disk File change picked up PUT: api/asset/model/100PUT: api/asset/model/100

Kick off model builder

Insert document into MongoDBInsert document into MongoDB

Figure 2: LunaTracker monitors the hard drive for changes
and notifi es LunaServer when fi les are updated. LunaServer
keeps MongoDB in sync and kicks off builders.

 021
B R I N G YO U R T O O L S T O B R OWS E R S _ J a n u a r y 2 0 1 3

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

022
B R I N G YO U R T O O L S T O B R OWS E R S _ J a n u a r y 2 0 1 3

0
2

2

or the level asset that they each have a copy of. Any other
changes can be ignored. As they handle or skip entries in
the changelog, they track their position within the changelog
using the ID of the last entry seen. This ID is sent to
LunaServer the next time the changelog is polled, so the
server only returns new changes that have occurred since
the specifi ed item. The UI is operational and responding to
interactions by the Insomniac. Changes are reported to the
server either as an update to the session (selection changes,
for example), or as an update to the level asset (perhaps
a model instance was moved to a new xyz location). All
changes are marked with the session ID that originated the
change, which is how LunaServer provides a unifi ed undo
system to all editors.

HOW THE UNDO/REDO WORKS Not all changes that
are sent to LunaServer are required to be undoable—that’s
merely an option that the client can specify when they submit
the change. If the client wants to make a particular change
undoable, LunaServer will record the old value as well as the
new value for any specifi ed fi elds in the changelog. When an
undo request is made, LunaServer searches the changelog
for the most recent entry belonging to that session and uses
the old fi eld values to create a new change request.

This new change is executed much like a normal
change: A fi ndAndModify command updates the appropriate
document and retrieves the previous values of the fi elds
that were changed. This process constructs a new change
document and inserts it in the changelog, referencing
the same session that initiated the undo operation. Any
editors that are open will pick up this event as they poll the
changelog, which tells them what fi elds they need to update.
Redo works in a similar fashion.

The undo/redo system also supports batching. This
means that clients can issue a series of changes to session
documents and one or more asset documents. Each change
is recorded separately, but if they all share the same batch
ID, they can be undone and redone as a single operation.
If LunaServer attempts to undo (or redo) a particular
operation, it will check to see if there are any other changes
that match that item’s batch ID. Any matches are also
undone (or redone) automatically.

CHANGING DATA FORMATS It is worth mentioning
that there is more than one way to fetch asset data from

LunaServer: If the request comes via a URL that starts with
“source,” the asset fi le is fetched directly from disk and
returned, and if the URL starts with “api/asset,” the asset
is fetched from MongoDB and returned. Usually these two
documents match, but they can also diverge.

Over the course of development, data formats are
constantly changing—sometimes because new features
demand it, sometimes to improve performance, and
sometimes just to satisfy programmer OCD. If you are just
adding new fi elds to a data structure, you don’t need to
do any extra work—add the fi eld and give it a reasonable
default, and then you can start referencing the new fi eld in
the UI, builders, and game. If that fi eld is missing from a
particular asset, just assume the default. MongoDB does not
need to know the document schemas, so there’s nothing to
update in the database.

However, we often fi nd the need to rearrange existing
data—for example, maybe we were storing angles in
degrees and now we want to store radians. In this case, it
is necessary to transform existing data so that it continues
to work as you develop new UI, builders, and game code to
consume the new format. Because this is a fairly common
occurrence during development of a game, LunaServer
provides a mechanism to transform data in this way.

Each of our asset types is assigned a version number,
and we maintain a series of scripts that can convert from
the previous version to the next. When we need to perform
a large data rearrangement for a particular asset type, we
increment the version number and write the conversion
script. The version upgrades are performed in a lazy
fashion—when an asset resource is requested, LunaServer
checks that it is of the latest version before returning it. If
it’s not the latest version, LunaServer runs the converter
and returns the updated asset.

LunaServer also writes the updated asset back into
the database so that it doesn’t need to be converted the
next time that it is requested. The asset in the database
no longer matches the saved version that is committed
to revision control, but that typically doesn’t matter. (I can
hear the groans coming from the W3C on that one.) A GET
request might actually make a change to the resource that
is being requested, but the action is transparent to the
client, and always the same, even if there are concurrent
requests. The client and server code are packaged
together for a tools release, so the client code always ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

UI
SessionId: 0x13
Initiates change
to IodDist fi eld
inside fi le.model

LunaServer

asset.model
{
 _id:100,
 path: “file.model”,
 modified: “1/1/12 1:30pm”,
 saved: “1/1/12 1:33pm”,
 asset:
 {
 lodDist: 15,
 geofile: “file.dae”
 }
}

POST: api/asset/model/100

Adjusts the model inside MongoDB and
retrieves the original lodDist value.

{
 sessionId: 0x13,
 change:
 {
 lodDist: 20
 }
}

Builds a new document describing the change
and inserts it into the changelog in MongoDB.

changelog
{
 _id: 1,
 sessionId: 0x13,
 collectionName: “asset.model”,
 collectionId: 100,
 originalValue:
 {
 lodDist: 15
 },
 newvalue:
 {
 lodDist: 20
 }
}

or the level asset that they each have a copy of. Any other
changes can be ignored. As they handle or skip entries in

LunaServer: If the request comes via a URL that starts with
“source,” the asset fi le is fetched directly from disk and

UI
SessionId: 0x13
Initiates change
to IodDist fi eld
inside fi le.model

LunaServer

asset.model
{
 _id:100,
 path: “file.model”,
 modified: “1/1/12 1:30pm”,
 saved: “1/1/12 1:33pm”,
 asset:
 {
 lodDist: 15,
 geofile: “file.dae”
 }
}

POST: api/asset/model/100

Adjusts the model inside MongoDB and Adjusts the model inside MongoDB and
retrieves the original lodDist value.retrieves the original lodDist value.

{
 sessionId: 0x13,
 change:
 {
 lodDist: 20
 }
}

Builds a new document describing the change Builds a new document describing the change
and inserts it into the changelog in MongoDB.and inserts it into the changelog in MongoDB.

changelog
{
 _id: 1,
 sessionId: 0x13,
 collectionName: “asset.model”,
 collectionId: 100,
 originalValue:
 {
 lodDist: 15
 },
 newvalue:
 {
 lodDist: 20
 }
}

Figure 3: The UI posts changes to LunaServer when an asset
is edited. LunaServer updates the asset in MongoDB and also
records the change in a separate collection.

g
a

m
e

 d
e

ve
lo

p
e

r m
a

g
a

zin
e

_
ja

n
u

a
ry 2

0
13

0
2

3
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

 023
B R I N G YO U R T O O L S T O B R OWS E R S _ J a n u a r y 2 0 1 3

expects to work against the latest asset defi nitions, and this
mechanism makes sure that is the case. This automatic
upgrade system means that it is not necessary to coordinate
check-ins of all assets to run fi xup scripts across the entire
asset tree.

WORKING ON THE WEB Our web-based architecture has
provided us with a number of benefi ts. For starters, anyone
with suffi cient motivation can build their own tools on top of
LunaServer’s infrastructure, and these tools can leverage
the multitude of technologies and libraries available for
working on the web. It’s also easier to prototype new
features, since refreshing a web page is a lot faster than
recompiling source code.

Also, the complete decoupling of the client and server
processes means that each one is insulated from crashes
in the other. Because LunaServer writes changes into a
database, it is relatively resilient to crashes, even if they are
in the server itself. Restarting the server and the web page
allows you to continue where you left off.

Running the server and client on the same machine was
very helpful in getting this architecture up and running, but
if that machine shuts down improperly—specifi cally, if the
database process shuts down improperly—the underlying
MongoDB might get corrupted. That database can be rebuilt
from the individual asset fi les on disk, but it can be a time-
consuming process, particularly if everything needs to be
rebuilt for the various platforms.

We also weren’t quite prepared to develop on a platform
that may change at any moment; every now and then we’ll
see an automatic update to Google Chrome that causes bugs
in our tools. Most of the time, though, these just highlight
defi ciencies in our implementation that we should have
addressed anyway.

For example, one recent update to Chrome started
caching all of our interactions with LunaServer, which
produced incorrect results in the editor and rapidly fl ooded
hard drives with gigs of cached entries (including every poll of
the changelog). As it turned out, LunaServer was not properly
fi lling out the cache headers for requests to dynamic content,
but it only became a problem after the new Chrome build
started paying attention to those cache hints.

All in all, our new tools architecture has been
successful in helping us build our fi rst cross-platform
console title. Automatic data upgrades and a unifi ed undo
system in particular have been extremely benefi cial to
Insomniacs as they worked on FUSE—and we know that
we’re just barely scratching the surface of what we can do
with a web-based architecture.

Chris Edwards is a senior engine programmer at Insomniac Games,
where he worked on FUSE as well as the RESISTANCE and RATCHET
& CLANK franchises. He has been professionally developing artistic
tools for over a decade.

Figure 4: LunaServer’s URL
schemes and corresponding
operations.

REFERENCES

1. “Architectural Styles and the Design of Network-based
Software Architectures” - Roy Fielding - http://www.ics.uci.
edu/~fi elding/pubs/dissertation/top.htm

2. Hypertext Transfer Protocol -- HTTP/1.1 - RFC 2616
Fielding, et al. - http://www.w3.org/Protocols/rfc2616/
rfc2616-sec9.html

3. Mongoose web server - http://code.google.com/p/
mongoose/

4. Introducing JSON - http://www.json.org
5. MongoDB - http://www.mongodb.org/

Asset Operations
api/asset/{ASSET_TYPE}/{ASSET_ID}

 PUT Create/replace the specifi ed asset
 GET Fetch an asset (*automatically converted to the latest format)
 POST Modify an asset (send partial changes to be applied)
 DELETE Remove an asset from the database

Session Operations
api/session/{SESSION_ID}

 PUT Create a new session
 GET Returns all data for a session
 POST Modify an existing session
 DELETE Remove a session

Undo/Redo Operations (session specifi c)
api/session/undo/{SESSION_ID}
api/session/redo/{SESSION_ID}

 GET Returns information on the undo/redo operations available for this session
 POST Undo or redo the most recent operation in the changelog for this session
 DELETE Prevent undo/redo operations beyond this point for this session

Changelog Operations
api/changelog

 GET Given a token, returns all changes since that token

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
http://code.google.com/p/mongoose/
http://www.json.org
http://www.mongodb.org/
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
http://code.google.com/p/mongoose/

http://gamasutra.com

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
2

5

At the 2004 Game Developers
Choice Awards, NanaOn-
Sha founder and PARAPPA
THE RAPPER creator Masaya
Matsuura won the First
Penguin award for his
work integrating music
and gameplay in PARAPPA,
UMJAMMER LAMMY, and VIB-
RIBBON. This award—now
called the Pioneer award—
was originally named for
the fi rst penguin in a colony
who is brave enough to jump
into water that might have
predators. Now it has been
16 years since PARAPPA, and
we thought we’d catch up
with Matsuura and see what
waters he’s diving into next.

PATRICK MILLER: We’ve seen
some developers having
trouble adapting to designing
for mobile games (and
touchscreens). How has that
been going for you?
MASAYA MATSUURA: We tried to
play some of our existing
successful titles with a

touchscreen, and I was already
satisfi ed with all of them; I
couldn’t think of anything new
I wanted to do with them. So
that was a problem for me, but
it’s changing now.

The important thing for
me is that everyone playing a
mobile game is chopping their
game time. It’s fragmented
gameplay. Everyone wants to
touch for a short time, then

do nothing, then touch. This
kind of balance, watching,
touching, talking, emailing,
this kind of rolling mission
should be designed into the
game. It’s very diffi cult.

PM: Have you run into any
particular challenges?
MM: We’re trying to fi gure out
how we can be successful with
a younger audience. Older
smartphone users have credit
cards, but many younger
players won’t have one. So
right now, we have no way to
appeal to younger audiences
with smartphones, and we
need to solve that problem.

The good thing [about
mobile games] for the parents,
is that kids are annoying all the
time, and if the parents want
the kids to concentrate and
be calm, smartphone games
are good for them. But is this
a good way to provide the kids
with a chance to play games?
I’m very afraid that when kids
grow up, the games they played

on smartphones won’t make
for good memories. I think that
communicating physically with
their parents would be much
more important experiences
for the kids. No one denies this
idea, but unfortunately, that
kind of thing is not common
sense right now.

PM: Interesting. Have you seen
any games on newer platforms
that you think would make for
good childhood memories?
MM: What was that one game,
the fi rst one on Google
Plus? It was a puzzle game,
a very simple one but very
sophisticated. It requires a
brain. Calculating. That was
a very good game for me, and I
was addicted. The last time I was
addicted to a simple graphics
puzzle game was 20 years ago.

PM: What kind of opportunities
have you found in Japan’s
mobile/social market?
MM: That’s a very big issue for
us right now. Of course, we’ve

REMIXING
CLASSICS

WE SPOKE WITH PARAPPA THE RAPPER CREATOR
MASAYA MATSUURA ABOUT INDIES, THE FUTURE OF
MUSIC GAMES, AND ADAPTING JAPAN’S MOBILE/
SOCIAL SCENE

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
2

6
0

2
6

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e “I’m very afraid that when kids

grow up, the games they played
on smartphones won’t make for
good memories.”

0
2

7

f 027C O L U M N _ J a n u a r y 2 0 1 3

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

been trying to make a social-
based something, but social
gaming in Japan has had some
big trouble with the kompu-
gacha schemes. I don’t care so
much about this kind of issue,
because new things always
have problems and we can’t
avoid this kind of thing. But as
a game developer, I think it’s
very important to make the
right tweaks for the market
and the industry. Since we
don’t have a border between
countries and territories with
social games, I think we can
tune this kind of era into a
more sophisticated one.

PM: Many game devs in the U.S.
look down on social games;
is the perception among
Japanese devs similar?
MM: Yes.

PM: Do you think there’s more
potential there?
MM:Yes, of course. Right now,
the important thing is sucking
money from people without
any fun; this is an interesting
tendency, but it’s not the
straightforward future, I think.
It’s a little bit of a bend into
some unknown area. If that
kind of direction is the center,
I’m okay, but I think we have
to fi nd a different direction for
social games.

We’re trying to make
something right now, and
making a game that makes
money and is fun is an
ongoing challenge for us. And,
you know, with the earthquake
last year, it’s changed the
way we think of our economy,
and the way we think of new
products and trends. The past
trends were always about
expanding something, but
now, our paradigm has shifted
and we’re not thinking about
expanding any more.

PM: In the past, you’ve talked
about how you wanted music
games to be more than just
the GUITAR HERO/BEMANI-style
rhythm game. Considering that
genre has kind of imploded by
now, where do you see music
games going?
MM: I saw one guy who did
an interesting TED talk,
named Eric Whitacre (http://
ericwhitacre.com/). He
was just a songwriter and
composer, and what he

did was he posted a video
of himself conducting on
YouTube with no sound. His
fans posted recordings of their
own singing while watching his
conducting, and fi nally 2,000
people posted according to his
conducting, and he decided to
mix all the videos together to
make a big choir that we had
never seen before.

This kind of new experience,
new interaction, new
unsynchronized collaboration
has big possibilities to make
new music experiences. For
example, singing is the best way
to collaborate with each other,
because everyone is good at
singing something in karaoke.
It’s not a game right now, but I
wouldn’t want the game system
to evaluate the music from the
audience; we could instead
use the YouTube viewer number
as a kind of evaluation, or
something like that.

PM: What have you been
playing lately?
MM: I haven’t played many
games recently. I’m playing our
recent product; we released
a 3DS download game for
the kids—it’s a violin lesson
game. I thought that no one
played 3DS download games,
but the publisher said that the
download number is increasing
rapidly. It’s very interesting. I’m
looking forward to how we can
have another chance to expand
something like that.

What we did was very
interesting; I always think
that music games are not just
about reproducing perfect
playing. I really love to see
the ugly playing. In this violin
lesson case, we hired the
actual violin player, and they
played a perfect, attractive
violin playing, and we recorded
that, and they played the ugly
playing too, so that if the player
plays poorly, the ugly sound
comes out.

PM: We had a postmortem from
Q-Games on PIXELJUNK 4AM,
and in it they talked about how
they had a hard time balancing
the musicians’ desire to have
the music sound good, with
the designers’ desire to build a
proper game.
MM: A very important point of
the attractiveness of 4AM is
that their focus is on a digital

type of music. This kind of
music is always very abstract,
and kind of hard to evaluate
whether it’s “good” or not…
In our game’s case, we would
show a very explicit result,
so all the players can detect
how and where they’d played
it poorly. This is very practical,
and a very different direction.

PM: Indies in Western markets
are doing well on the PC, but
in Japan, the PC games have
always been kind of a highly
specialized niche. Is the
Japanese industry perception
of the PC market changing?
MM: I really hope that
Windows 8 is a chance for
us, and I’m keen to see
the Microsoft Surface. I
think that already many
people dig the possibilities
of a touchscreen device,
but having a keyboard and
tablet could be a completely
different interaction. I am also
keen to see how they support
the camera; they already

have the Kinect experience,
and if they can minimize the
technology and put it on the
Surface, we’ll have many
possibilities as developers. Of
course, Microsoft hasn’t told
me anything.

The fever for Apple products
interests me; some parts, to
me, are understandable, and
some aren’t. I’ve had a long
history with Apple products.
My fi rst was an Apple II, so
I know that Apple can be a
dreamy company, but also a
disappointment. The Windows
environment doesn’t have the
same kind of thing. Its focus
is too strict for me. With the
Surface, Microsoft may have to
change their strategy, which
could be a chance for us. It’s
very risky, so far, for us to make
PC games, because on the PC
it’s very hard to sell products
directly to the customer.
Already, we have many Internet-
based, web-based game
services that support Windows,
so it’s very competitive, and it’s
very hard to understand the
business battlefi eld.

PM: You know, I didn’t expect
that the head of such a creative
studio would speak so much
about how technology informs
his work. What’s the next
major tech advancement you’re
looking forward to?
MM: That’s a good question.
Recently, I’ve been really
interested in AI. Maybe AI has
a big possibility to expand our
industry to more attractive
and interesting ends. I have
a Facebook friend that posts
his AI things and ideas on
Facebook, and they look very
interesting to me right now.
I think it’ll be the next big
technology for games, but I’m
not sure about how we could
use it in practical ways for
games yet.

Just a few years ago, I
didn’t have so much intention
for AI; I thought all it did was
handle enemies’ activities in
RPGs. But I think that was a
misunderstanding.

The fi rst time I made a
music-based game, well,
those games don’t change. I
really wanted to expand the
music game possibilities to
wider and more attractive
areas, but that required AI
tech. Music is a very strange

http://ericwhitacre.com/
http://ericwhitacre.com/

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
2

8

or something to express
something higher… Well, I
think that many gameplay
developers don’t care about
this kind of thing.

PM: So what’d you think when
you found out that PARAPPA
was going to be in PLAYSTATION
ALL-STARS BATTLE ROYALE?
MM: Well, in that case, I can
do nothing. [Sony] decided to
use PARAPPA for their game
ideas, and I checked the
gameplay, and for me, that
kind of expression doesn’t
look so violent. It’s not real
characters, real graphics
fi ghting each other. It doesn’t
look so violent. I don’t know.
It’s a sense.

PM: I’m under the impression
that, historically, Japanese
developers have been
less likely to share game
development technology and
techniques with each other
than American devs. Is this still
the case?
MM: It’s getting changed.
Around me, at least, many
developers have been using
Unity, especially independent
small developers. With
Unity, it’s easier to share the
experience with each other,
so individual small developers
can collaborate with each
other more easily. My feeling
is, the small developers have
more chances to collaborate

with each other, because there
are so many opportunities and
so many different platforms
that every time we have to
make a joint venture with
other teams.

PM: We’re also seeing a lot of
established devs in the U.S.
start their own independent
studios; is there a similar trend
in Japan?
MM: No, actually. This is a very
important point; in Japan,
the big trend comes out for
social games, and the big two
or three or four social game
companies sucked up all the
people—experienced people
and new developers.

PM: It has been 16 years
since PARAPPA THE RAPPER
came out. Do you think it has
infl uenced younger devs to
think differently about music
and game mechanics?
MM: Yesterday, I had a chance
to chat with a Japanese
music and game journalist,
and she said she had many
chances to interview the
younger musicians, and
she always asked them
what games they played in
childhood, and many of them
answered with our games. I
really want to see how new
developers and younger
people try to do new things.
I really liked SOUND SHAPES;
FEZ is also interesting. gd

expression; it unifi es and
synchronizes human activities
with almost nothing, and
people synchronize their
emotions and expressions
to make something unifi ed.
I think that AI is needed
to work with this kind of
primitive activity.

PM: Last time [GD Mag editor
emeritus] Brandon Sheffi eld
spoke with you, you were
rather outspoken about how
focused the game industry
was on making violent games.
What’s your take on game
violence now?
MM: I changed my mind a
little bit after my last talk
with Brandon. He said “Mr.
Matsuura, you said violent
games should be decreasing
in the market, but I still love
them!” I understand that
violence is irresistible, but
from the Japanese stance in
the game industry, I want to
appeal to more, better ways to
expand a game’s expression
with more interactions. Violent
games are okay, but let’s
expand them.

I had a very good talk with
one very well-known game
developer in Japan, Masanobu
Endo-san, well known as the
programmer for XEVIOUS.
More than 25 years ago, I was
addicted to XEVIOUS, and I’d
just sit there with a stack of
100-yen coins.

My biggest question
with XEVIOUS was about the
music. XEVIOUS started with
(staccato) “ja ja ja ja, ja ja ja
ja”—a very warlike sound
that encourages the player to
play the game. But when the
game started, in the game,
you hear a very strange,
sensitive, ostinato sound, the
“piroriro, riroriro.” It kind of,
hmm, sounds like the enemy
is laughing, or a bug in the
computer, or something.

I didn’t understand why
this kind of sound comes
out, and I didn’t understand
whether the sound came from
the enemy, or my plane, but I
couldn’t detect it, so I asked
Endo-san directly, and he was
surprised. “No one has ever
asked this kind of question!
We fi rst programmed XEVIOUS
without any music, but it was
too scary, so we had to add
some kind of music.” So that
was the reason to add the
music for the game.

I was surprised, because
I never felt that game looked
scary. It’s very smart, very
practical, very algorithmic.
But Endo-san’s feeling was
completely opposite
from mine.

The feeling of beating
someone else is very
attractive to game players,
but if we can produce games
that leave other impressions,
like music, or graphics,

http://GAMECAREERGUIDE.COM
http://GAMECAREERGUIDE.COM
http://www.gamasutra.com/jobstoadavance

0
3

0
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

 pm
 0

3
1

p
o

s
t

m
o

r
t

e
m

_J
a

n
u

a
ry

 2
0

13

There’s a little video floating around of that moment when PaPo & Yo first went live for pre-orders on the PlayStation

Network. Our creative director and co-founder Vander Caballero calmly placed his pre-order, and then walked into

the TV room to announce it to the rest of the team. There were high-fives all around, and the excitement in the room

was palpable—it was a brand-new sense of accomplishment for the project being one step closer to launch. The next

day, our live-action cinematic launch trailer had over 50,000 hits, and PaPo & Yo was trending worldwide on Twitter.

Developing PaPo & Yo has been quite the ride. Minority Media is a small band of triple-A developers—used to working

in large teams with abundant resources—who went indie to create games, taking advantage of digital delivery systems.

And while PaPo & Yo got its fair share of media detractors, it also garnered a whole lot of deeply personal press

coverage, with journalists and fans telling their own stories in response. It was these heartfelt and profound messages

that told us we did something good. ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

 pm 031
p o s t m o rt e m _ J a n u a r y 2 0 1 3

0
3

1

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

032 pm
p o s t m o rt e m _ J a n u a r y 2 0 1 3

0
3

2

W H AT W E N T r i g h t

1 Choosing a story that mattered PaPo & Yo is an
emotional adventure filled with puzzles. You play as Quico, a young
boy hiding in his closet from thunderous footsteps outside. Through
his imagination, Quico escapes to a magical world of colorful favelas,
with houses that can sprout legs and fly, and a robot friend who can
act as a jetpack. Quico is soon introduced to Monster, who is both
friend and foe. Monster can be helpful and kind—Quico can use his
belly as a trampoline—but when Monster eats a frog, he turns into
an uncontrollable fiery demon. It’s an autobiographical metaphor of
Vander’s childhood with his alcoholic, abusive father in Colombia.

In many ways, being able to tell that one true personal story
was a unifying factor throughout the whole development process.
First, it’s much easier to stay on course creatively if there’s one
vision, and in the end, it shaped the experience as if we were
working on a film with a director, including the emotional highs
and lows. Deferring to Vander helped gel the team and design,
and helped filter creative ideas effectively, because he could say,
“That’s not what it was like in real life. My life.”

For instance, Monster’s design was changed late in the project
because Vander found the old one too nice and likable. It did not
evoke the same emotions he had when seeing his father, whom he
describes as “distant and scary, but at the same time protective.”
Some fans were upset at the change when we first showed it, but
ultimately Vander is the one who knows what it should feel like. A
week after release, a fan tweeted, “It would be so sad, being afraid
to hang out with your dad.” When Vander read this, he went really
quiet and eventually said, “It is.” People understood.

Secondly, the team’s personal buy-in was a big motivator.
Vander was fighting to change the industry with more emotional
stories by offering up his own story to start. Being a part of that
meant being able to make a difference in creating something that
was touching and entirely unique with an artistic depth, but since
the game is autobiographical in nature, we encountered some
unexpected challenges, like planning and implementing the right

emotional curves for how we wanted players to feel, striving to
evoke empathy through interaction. None of us had ever worked on
a project this profound, and it was important for us to convey the
story that Vander wanted to tell.

We found that PaPo & Yo made a difference in people’s lives,
but we never imagined the quantity and kind of meaningful fan
mail that we would receive, like children of alcoholics finding
healing or gaining the confidence to talk about what happened to
them. Or the single dad who wrote us a Facebook message to say
that he doesn’t want to appear like Monster when he loses his
temper and yells at his five-year-old son, so he’ll handle tough
situations differently.

2 Choosing the right people In building a team from the
ground up, it was important to bring on people that we could both
trust and work with well, especially when it was going to be close
quarters and long days. Aside from having greatly experienced
people on the team, there was good chemistry and a great blend of
personalities, so often, it did (and still does) feel like going to work
with friends. Many of us had also worked together previously, so we
were able to make design decisions that played to our strengths.
For example, having an experienced animation programmer
allowed us the opportunity to use some great character animation
with a third-person camera. Vander has often said in interviews
that having this kind of close-knit core developer team is like
having a small functional family, especially when there are times
when you see your colleagues more than your own family.

The experience of the team was crucial in delivering such an
experimental game. The game design was by no means final when
we started production, and we had a very organic approach to building
it. We modified and redid puzzles several times in response to focus
tests, and new game mechanics were introduced as the story evolved.
For instance, throwing soccer balls back and forth with Monster
was a very late addition to the game, when we realized people did
not have enough occasions to interact with him in his friendly state,
and were not getting as attached to him as we wanted them to.

We were constantly course-correcting to get the game to evoke
the emotions we wanted it to, and the high level of experience of
the team helped them prioritize tasks to deliver things on time
even when everything was constantly changing around them. It
was still hard, but being able to roll with it made the end product
better. In the same vein, everyone felt a higher level of ownership
and accountability for their part in the game, which consisted of
multiple roles given the size of the team.

3) exCellent audio outsourCing studio We outsourced
our music and audio work to composer/sound designer Brian
D’Oliveira and his team at La Hacienda Creative, but it didn’t
actually feel like outsourcing. Instead, we were collaborating with
them just like they were part of the core team, because they were
just as dedicated to PaPo & Yo as we were.

Developer Minority Media Inc.
publisher Minority Media Inc., Sony (Pub Fund)
release Date August 14, 2012
platforms PlayStation
of Developers 12 in the core team and approximately 21 contractors
length of Development 18 months
buDget $1.5m
Development tools Unreal Engine 3, Visual Studio, 3ds Max

f 000
C O L U M N _ J a n u a r y 2 0 1 3

0
3

3
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e
 pm

 0
3

3

p
O

s
t

M
O

r
t

e
M

J
a

n
u

a
ry

 2
0

13

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

034 pm
p o s t m o rt e m _ J a n u a r y 2 0 1 3

0
3

4

On our side, we had a passionate
programmer (Frédéric Hamel) who loves
audio, and on the La Hacienda side, they
had a passionate composer. This passion
was how we turned an otherwise run-of-
the-mill outsourcing contract into a real
collaboration. It was by chance that Vander
and Brian happened to meet at a party,
but somehow, things just clicked for Brian
working on PaPo & Yo, having grown up
in Venezuela and experiencing a troubled
childhood himself. For him, it also became
an immensely personal project, and his
devotion shows in his work.

La Hacienda normally provides
music and sound services to film and
TV studios, but they wanted to try their
hand at working on a video game. Even
though they were new to game music,
they understood the opportunities offered
by an interactive medium. Working with
Audiokinetic’s Wwise audio middleware
allowed them to create a dynamic and
ever-changing sound environment, which
added a lot to the feel and authenticity of
the game. Brian didn’t want any canned
sounds or sampled virtual instruments,
so all of the game’s music and audio is
either captured from the field or recorded
in the La Hacienda studio. Brian did an
expedition to South America to record field
ambiance, sometimes waking up in the
middle of the night to capture things like
frog sounds and monkeys howling.

In some levels of PaPo & Yo, these types
of sounds are woven into audio designs of
30-40 layers of music and 60-70 layers of
sound effects, all differently triggered by
various actions and looping dynamically.
Brian plays about 80% of the instruments
in the game, having learned about 15, with
some sourced from all over the world. And
on top of that, he handcrafted some himself.
As programmer Antonio Maiorano said,
“That guy is so talented, he could string
floss on a piece of wood and play it.”

To facilitate La Hacienda’s first foray into
video game sound design, our programmer
Frédéric spent a great deal of time working
with the audio and audio team, guiding
them in how to make the most of their tools
and providing them with the features they
needed. Later on, we paired a junior audio
engineer with a more senior one, which
also helped immensely in streamlining
processes. Ultimately, the whole soundtrack
endeavor was driven by passion for making
it the best that it could be.

Hearing each new piece of the
soundtrack in-game was incredibly
motivating for us, and made us see our work
in a whole new way. Adding that dimension
was an amazing morale booster and helped
immensely in the last sprint toward the
finish line.

4) Unreal engine 3 Unreal was the best
option that was available to us, as most of
the team had already shipped games with

it, and knew its strengths and weaknesses
very well. This helped get the team up and
running in no time. We were setting up the
company in November 2010 and in June
2011 presented a playable demo on PS3
at E3 that won six awards, including two
from GameSpot for Best Adventure Game
and Best Downloadable Game; Best Puzzle
Game of E3 awards from IGN and GamePro;
Gamer Theory Media Best’s Downloadable
Only Game and Bitmob’s “This is Kind of
Upsetting” Non-Award Award. We wanted to
avoid building an engine from scratch, and
UE3 was the right fit given the scope of the
game and small team size.

Vander loves Unreal. “It’s the best level
editor I’ve ever used in my life,” he said,
“You’re able to do so much, so crazy fast!”
Unreal’s editor was a great asset that
allowed us to quickly start producing levels,
art, and cinematics, and have them run
on the PS3 without much effort. We were

able to direct our efforts to creating unique
gameplay mechanics instead of platform
support and other technical details.

5) Open, inclUsive creative prOcess
PaPo & Yo was guided by a strong vision,
and flavored by the personalities of the
people who worked on it. Vander definitely
had specific mechanics and intentions in
mind when designing the game, but he
left many of the particulars to be filled
in by others on the team in the way they
liked best. He would paint the mechanics
with broad strokes, for instance, asking
for a way to have fun with Monster by
throwing a soccer ball back and forth with
him. A programmer and an animator then
experimented with various ways of getting
that to happen and be fun, figuring out how
it would be controlled, how Monster reacts,
and how you can catch the ball in midair if
you run and jump in a certain direction.

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

 pm 035
p o s t m o rt e m _ J a n u a r y 2 0 1 3

0
3

5

In general, we really enjoyed this creative freedom, which
added a whole new value and depth to the design of the final
product. Even though there were many ideas that didn’t make
it into the game, knowing that your suggestions would at least
be considered made a big difference, especially for being so
personally invested in the project.

Many key game elements, like the chalk outlines and upside-
down hint boxes, came from the team, and in the end, each person
can feel a greater sense of personal accomplishment toward the
group effort.

WHAT WENT wrong
T

1) Scope PaPo & Yo was definitely an ambitious and challenging
project for such a small team to make, especially as we set
our own expectations quite high, coming from big studios. And
while the budget for PaPo & Yo was approximately a mere 3%
of most triple-A titles, we were still aiming high, not only for the
end product, but also for ourselves. The reality was that budget
constraints couldn’t afford us the freedoms that we were used to,
like other people from alternate studio locations jumping on to
help finish the game.

We initially planned for much more variety in settings, going
from the favela to a tree village, an electric plant, and ancient
ruins inside a mountain. As we progressed, we realized that this
was more work than we could handle, and we had to consolidate
the settings by focusing on the favela a lot more, differentiating
scenes through lighting, weather, and changes in texture and
color, without completely changing the background.

Even though the game has a wide variety of mechanics as it
stands (new mechanics are introduced throughout the game in
nearly every puzzle), we had plans for several more that we had to
remove, like climbing on Monster’s back to control his movement,
or making Quico’s robot Lula interact with electricity and water.

Keeping to the game’s story was both a blessing and a curse.
While it helped to tailor the creative direction, it also had a huge
impact on iteration, level design, and quantity of assets because
certain things just couldn’t be cut. We did reduce the scope of the
game compared to original plans, but we had a story to tell that
we did not want to compromise, even if that meant having less
time to polish certain areas.

2) BugS Despite our best efforts at bug hunting and hiring a very
talented QA company, we unfortunately shipped with a number of
remaining bugs in our first release of the game, and while some
of these have been addressed in a day-one patch, we’re still in
the process of fixing some others. We fixed all the known bugs
in the game before releasing, so this caught us by surprise—the
remaining ones were simply not discovered before release.

One issue with debugging a complex puzzle game is that many
bug-prone situations will only arise with players who don’t know
the solution to the level. Our testers quickly discovered how to
solve the puzzles, and while they made every effort to break the
game by making the wrong decisions, it is hard to match the range
of possible actions of a genuinely confused or lost player. On our
new projects, we’re holding frequent playtest sessions, leaving
more time for polish, and securing a larger testing team.

Another issue is that our game has heavily scripted levels,
with lots of unique logic in each level. Every puzzle is completely
different from the next. This meant heavy use of visual scripting
(Unreal Kismet), which was invaluable for quick prototyping and
iteration, but made things harder to debug in the end.

Visual scripting languages are very easy to prototype with, but
require a lot of discipline to keep clean and maintainable. When
left unchecked, the project can devolve into quite a literal
variation on the spaghetti code problem, and lots of effort needs
to be invested in rewiring everything to make sure it is bug-free. ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

Another issue is that debugging tools are typically less powerful
and evolved than the ones available for more widespread
programming languages. One lesson we will draw from this is
the need to implement prototypes instead of basing the final
level directly on the first draft, which allows a programmer the
opportunity to make the level script safer and more robust.

3) Problematic cinematic Production PiPeline Our
cinematic production pipeline was one of the kinks we wished we
could have worked out prior to starting, but unfortunately, that
luxury is now reserved for our next title.

We wanted our game to be innovative in several respects, and
particularly in the way the story was told. The challenge of telling
such a complex story interactively is in the balance between how
much players are playing, and how much they’re watching. Vander’s
direction was to create empathy through interaction; the game
doesn’t tell you that Monster cannot resist frogs or that he gets
mad when he eats one, so you must experience that firsthand. But
we realized that a number of important parts of the story could
only be told through cutscenes, so we wanted them to feel tightly
integrated with the game, as if they took place in the same setting
as the gameplay.

Unfortunately, this meant they had to be developed while the
areas where they took place were still evolving—indeed, we iterated
on many of the levels until the very end. This meant we had to make
multiple changes to the cinematic direction, in and out points,
animation, and subsequently music—all causing major headaches,
for everyone.

We tried to improve the situation in various ways by developing
new ways of integrating cinematics into the game to resolve
some of these interdependencies, but since we did not have time
to go back and redo previously authored cinematics, this meant
maintaining several pipelines for doing the same thing, which did
not simplify the process. In the future, we’ll be much more careful
about having a stable pipeline and better-defined constraints for
each scene so that our cinematics production doesn’t suffer as
much from our very dynamic level-design process.

4) org chart hierarchy issues In 2010, the company was
essentially four people, and we gradually ramped up after our
successful E3 showing. We took time to carefully select new
team members to make sure they would be a good fit to work
with us, which meant that not every position was filled as early
as it should have been. For example, we did not have a lead artist
at the beginning, and that put a great deal of pressure on our
environment artist to steer the art department.

Even once we got every member of our dream team on
board, we still had to endure some growing pains. We worked
for months as an even smaller group with no defined process
before eventually introducing some hierarchy in the middle of the

development process. This meant we had to make sure everyone
was on board before making a decision, or else someone could
feel bypassed or that his authority was being undermined.

We also hired a small number of interns to help move the
project along faster toward the end. They did help, but we were
not always able to make the most efficient use of their time, as we
did not have a solid mentoring and leadership structure in place,
and we were very busy producing the game itself. We will still
be looking at potential interns for future projects, but with more
careful planning and more structure in place.

5) outsourcing Being a small company with limited funding,
we could not afford to hire specialists of every single discipline
needed to get a full game off the ground. We covered many of our
needs by hiring versatile people who helped on several things
at the same time, but for some other things we had to resort to
outsourcing. This allowed us to afford the services of very talented
people we could not have otherwise worked with, but it’s always
harder to communicate and iterate with someone when they’re
not in-house.

One particular aspect that fell victim to budget restraints
was character modeling. Without an abundance of start-up
resources, character modeling was contracted to some of
Vander’s talented friends who wanted to help with the project
(and did so, immensely), but the factors of different time zones,
schedules, subsequent breakdowns in communication, and
pipeline delays contributed to a very long process that affected
internal workflows.

Had we been able to throw money at the problem, we would
have brought in experienced, full-time, in-house character
modelers, but with our current resources, outsourcing is still
an attractive option. The lesson to learn here is really in how we
approach outsourcing from the outset. Having the right attitude,
approach, combination of people, and most importantly, passion,
can make all the difference in transforming outsourcing into a
real collaborative experience.

conclusion PaPo & Yo was Minority’s first game, and after
successfully shipping it, we feel (as clichéd as it sounds) that
dreams do come true. Highlights for us have come in all shapes
and sizes, like the positive review in The New York Times, or the
GameStop store manager who covered someone’s balance of
$2.04 just because he was buying PaPo & Yo, or the superfan
who’s played over 70 times and is on a mission to have a Lula
birthday cake for his daughter (also a superfan). It’s a new kind of
positive attention that we never anticipated, and we hope our fans
see how much we appreciate it on a frequent enough basis.

Now that we’ve been through the first title, we’re in much
better shape to handle the next projects. We’ll be able to start
with a fully functional team from the start, rather than ramping
it up over the course of the production, and we have added new
senior members to our team, who can help us work out the kinks
in outsourcing and hierarchy structures. We’ll allow more time
for polish, accounting for the time needed for the submissions
process and related marketing efforts. We’ll also be more mindful
of the debugging time required for puzzle- and exploration-heavy
games, while developing our workflow to ensure that what we
build is more robust from the start.

 We have an incredible sense of pride and a new level of
achievement for having pulled off what we did. Undoubtedly, the
bad reviews can be humbling. But nobody on the team had ever
read fan mail for changing someone’s life until now, and even if
that’s not weighed in Metacritic, we’ll happily take that instead. pm

This postmortem was co-written by Deborah Chantson, community
manager/writer for Minority Media, and Julien Barnoin, lead programmer
and co-founder for Minority.

0
3

6

036 pm
p o s t m o rt e m _ J a n u a r y 2 0 1 3

0
0

3
7

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

Are plAyers pushing your gAme in directions

you never intended it to go? in this Article,

nils pihl explores how multiplAyer gAmes

encourAge good And bAd plAyer behAviors.

 037
C r o s s - p l at f o r m _ N i l s Pi h l

0
3

7
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

An interesting thing about games is that the player always
helps design them. No matter how simple or complex the
game is, there is always room for our own creative input.
We add new rules, new contexts, new narratives, and new
measures of success, and we choose which of the original
characteristics of the game we want to interact with. Games
are much like books in this manner, and we will often find
the most interesting things about games between the lines
of the author’s instructions.

When designing games, this is both a blessing and curse.
How the player behaves within the context of the game has
an enormous impact on how enjoyable the game will be
for the player, and game designers often find themselves
struggling with how to encourage the players to play in
a way that will be rewarding. Managing the expectations
and behaviors of the player is a daunting task, but one of
tremendous importance. Games that are well developed
in every sense can still fall short to an unhealthy in-game
culture. The game is only as good as the players.

So how does one manage, or even anticipate, how
players might behave within the game? To understand how,
we will first have to gain a rudimentary understanding of
behavior itself.

understanding player behavior Behavior is the
way someone acts in response to a particular situation
or stimulus. It’s important here that we don’t confuse
behavior, which is a model for describing someone’s
actions, with the actions themselves.

“I am going to sleep” is a good example of what an
action might be, and “I will go to sleep after this TV show,
even if I’m tired now” shows us what a behavior would
be. Whereas an action could be described as a data point,
behavior is a graph attempting to make sense of the data.

If we have a good model for someone’s behavior, we can
extrapolate, derive, and experiment.

Some behaviors are particularly successful at achieving
things that are good for us, while other behaviors can be
wasteful, detrimental, and destructive to us. This helps us
rationally choose some of our behaviors, and avoid others.
We brush our teeth with toothpaste to keep our teeth white,
but only very few will make the leap and attempt to brush
their teeth with bleach.

But we aren’t that good at avoiding destructive behavior.
We routinely engage in behaviors that are bad for us,
even when we are very well aware of the negative effects
the behavior might have. Consider things like smoking,
gambling, unprotected sex, and speeding. How can we
explain these irrational behaviors?

The key lies in understanding that the roles we ourselves
play in determining what behaviors are prevalent in our
culture are fairly limited. Behaviors and ideas seem to have a
life of their own.

The famous evolutionary biologist Richard Dawkins
coined the term “meme” in his book The Selfish Gene, in an
attempt to better explain what generates culture. As a game
enthusiast, you may remember that Huizinga thought that
our desire to play was what generates culture, but that is not
a complete model. Dawkins found a way to explain how the
things that play generated got to be so popular—how they
could move from isolated behaviors into the realm of culture.

A meme is a chunk of behavioral code—a behavioral
gene—that can get copied from one individual to another.
Memes are the building blocks of behavior. The words
and gestures we use, the phrases we choose, the way we
fold our laundry, the way we get our hair cut, these are all
memes, and they are ideas that can be observed, copied,
and mutated.

In The Selfish Gene, Dawkins explains to us how natural
selection acts on the genes, rather than the individuals.
This gene-centric view of evolution has helped shed a lot

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
3

8

038
C r o s s - p l at f o r m _ N i l s Pi h l

of light on some of the more peculiar
aspects of biology. The theory shows us
that certain genes are more successful at
being reproduced than others. The more
successful genes will outperform the less
successful genes and, with time, we will
see more of the successful genes than we
will of the less successful genes.

This simple process generates
organisms that are very well adapted to the
environment they live in. The gene-centric
view of evolution has helped explain things
like diseases and cancer, and is now a
more useful model than Charles Darwin’s
own model of evolution. The individual is
a machine built by and for genes, with the
sole purpose of replicating genes.

Although they obviously do not exist in
any physical sense of the word, imagining
that same process of natural selection on
ideas helps us understand why bad ideas
spread. The survival fitness of a meme is
not determined by the effect it has on its
host, but rather by how well it propagates
to other hosts. Memes seemingly hijack
our brains and make us into machines for
spreading more memes. Behaviors and
ideas have a viral life of their own, just like
our genes do, and we are the sometimes-
unfortunate hosts of this second replicator.
Memes spread through observation
(even involuntary observation), and they
copy themselves and mutate into new,
potentially viral, strains of ideas.

When designing games, we are
not completely at the mercy of these
memes; there are ways for us to guide
the evolutionary process of memes to a
place we want. Although we can’t choose
which particular memes will emerge from
selection, we can alter the environment of
selection itself. By carefully designing the
environment that the memes will populate,
we can make some predictions about what
will emerge.

A fitness function is a model for
evaluating the fitness of an entity.
When programming things like genetic
algorithms we are in complete control

of the fitness function—we author it
ourselves—but even when we are not the
direct authors of the fitness function,
we can approach it sideways and try
to model how it would work in the
environment we created.

In the real world, we can see things like
giraffes evolving over time to fill a niche
where they have an opportunity to thrive.
The victory condition for a giraffe is to
survive long enough to reproduce, and this
will require a steady source of food, relative
safety from predators, and a fair chance
at competing for a mate. Their longer
necks allow them access to a food source
with less competition, and the population
grows in response to the improved
living conditions. Just like the possible
emergence of something like giraffes
can be predicted by seeing that there are
untapped resources in the form of tall, lush
trees, we can anticipate the emergence of
certain behaviors by examining the victory
conditions of the game.

The Uroboric cycle For every game,
there are strategies (behaviors) for winning,
and given enough time the behaviors we
observe will drift toward strategies that are
better at winning. Simply put, people will
get better and better at winning the game
with time. The rules that the designer of
the game puts in place (the internal rules)
are the first building blocks for the fitness
function for behaviors, so we must take
great care to make sure that the internal
rules create a problem that is solved by
behavior we want to observe. We need to
create the game in a way that ensures that
the optimal winning strategy is something
that we want our players to do. When the
desired behavior of a player is not aligned
with the optimal winning strategy, you can
end up with a product that is unenjoyable
for many, hard to manage, and difficult
to scale.

In any game environment with multiple
players, the situation gets complicated
further. The way that players behave

will change the game, and thereby the
fitness function, and give rise to a new
generation of memes in response to the
changed environment.

How to best play a game with
several players depends greatly on the
other players, and the prevalent behaviors
that we can expect from them act as a
new set of external rules that will alter the
fitness function even further. This iterative
process of uroboric balancing will continue
until one meme is successful enough to
dominate the memepool.

The internal rules of the game act
as an initial first-generation fitness
function for player behaviors. As different
strategies are tried, the internal rules
will help determine which strategies
are more successful. An example of this
could be how a slow-closing reticle in a
tactical shooter will favor a slower, more
methodical player movement meme.
Player strategies in this environment
will have to strike a balance between
accuracy and mobility, and with time,
players will intuitively play the game in an
ever closer-to-optimal way.

In a multiplayer environment,
however, the players will have to
compete with each other for limited
resources. There are only so many kills
to go around, and strategies can quickly
develop that are more competitive.
When this happens, all players will
have to respond to this new competitive
environment—an environment that was
not initially designed by the game’s
creators (although it might well have
been anticipated).

The players themselves become
a part of the environment, constantly
shaping the in-game culture toward
better winning strategies.

Modern Warfare and The Tragedy
of The coMMons Call of Duty 4:
MoDern Warfare is a tremendously
popular first person shooter—fast-paced
and nerve-wracking. Being good at it
required great reflexes, fantastic hand-eye-
coordination, and a fair deal of strategic
thinking. Being good at Call of Duty is
hard, and not everyone can be competitive
on the leaderboard... At least, that was
the intent. The map Crossfire in MoDern
Warfare illustrates beautifully how a
detrimental meme can gain a foothold
because of the game’s internal rules.

The Crossfire map was very popular
because it supported a range of different
play styles, but there was a crucial design
element of the map that gave rise to some
of the most frustrating and prevalent
behaviors in MoDern Warfare. The
opposing teams would start on either end
of the map, separated by various buildings
and other obstacles. To get to the enemy,
you would have to leave the relative safety
of your starting location and move into the ga

m
e

de
ve

lo
pe

r m
ag

az
in

e in-gaMe
cUlTUre

exTernal rUles

MeMes

inTernal rUles

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
3

9

more dangerous warzones in the middle of
the map. To be a successful player on the
Crossfi re map, you had to strike a diffi cult
balance between forward momentum and
tactical retreats—it was a diffi cult map with
a lot of room for improvisation. Topping the
leaderboards on the Crossfi re map could
prove very diffi cult.

But players quickly found a way to
get cheap points. One of the walls that
separated the two teams early in the game
was low enough for a grenade to be blindly
thrown to the other side. There was a good
statistical likelihood that an enemy would
be on the other side, and chance would
determine if you got a “free” point or not.
The combination of predetermined starting
points and insuffi cient obstacles between
the teams had allowed one creative player
to get a stylish kill.

The very fi rst time it happened it
was undoubtedly impressive—to have
invented the technique, you needed to
have a very intimate knowledge of the
game and the map. The problem was
that the meme was easy to copy, without
requiring any particular skill at all.
More and more people started blindly
throwing grenades over that wall, which
decreased the chances of each individual
thrower getting a point—but increased
the chances of a hapless opponent
being unfairly killed early on. The “nade
spamming” meme was the perfect storm
of unfortunate circumstances.

The strategy was attractive to players
because it was easy to use. Very little skill
or exertion was needed to have a chance
at a free point or two, so a lot of people
gravitated toward it. The cost of trying it
was also exceedingly low—in the fast-
paced environment of the Crossfi re map,
it would be hard to use the grenades later
on, so you might as well throw a few off
early in the game and hope for the best.

And in hoping for the best lay the
second rub. Random interval reward
schedules can be incredibly addictive.
The fact that you didn’t know if you would
hit an enemy or not turned throwing the
grenade into a highly addictive gambling
scenario. All you had to wager was a
cheap grenade, and you could win very
desirable points in exchange. It was a
meme that was easy to copy because it
was so easy to observe and understand
the required actions, it was fairly
successful at a low cost, and it was
very addictive.

The more people copied the meme,
the faster it spread, and after a while
the meme was so prevalent that it was
expected behavior. Both teams would
throw grenades over the wall in the fi rst 20
seconds of the game, and chance would
determine how many players from either
side would be taken out of combat before
the battle even began. Needless to say,
being taken out in the fi rst 20 seconds of

the game is incredibly frustrating—but if
you chose to avoid the situation where
you could get killed early, you would
forfeit an opportunity to stay competitive
with your teammates.

Once the meme had become
popular enough, no one really stood
to gain anything from it anymore. Too
many people were nade spamming,
and the overall fun of the game was
taking a severe hit. The problem was
that the meme proved very diffi cult to
eradicate—the cost of changing the
map itself was prohibitive, and for game
hosts to kick off offenders proved to be
a task of Sisyphean dimensions. The
viral meme was spreading too fast to
be contained. The internal rules of the
game made it fantastically easy for the
meme to spread; KillCams would replay
the moments before your avatar’s death,
and the victims quickly caught on and
reciprocated with more nade spamming.
Teammates on both sides observed the
behavior and joined in.

Although the behavior had been
perfectly rational, benefi cial, and
entertaining before the meme become
widely adopted, the situation changed
with scale. There was only room for so
many people to nade spam, but there was
no mechanism from preventing everyone
from having a go at it.

In game theory, what happened to
MODERN WARFARE is referred to as the
Tragedy of the Commons, and it is a
surprisingly common occurrence in all
kinds of everyday situations. But the
problem of containing the spread, and
preventing the Tragedy of the Commons,
is better explained with another game
theory classic: the Prisoner’s Dilemma.

Because the meme was so easily
copied, players would have to reach
an agreement (explicit or otherwise)
to cooperate in maintaining its spread.
If everyone agrees not to nade spam,
the game will be more enjoyable for

everyone. The problem is that once
people have stopped nade spamming,
the winning potential for someone trying
it gets very high—and it only takes one
defector to nudge the uroboric cycle back
toward the Tragedy of the Commons.
Richard Dawkins, the father of meme
theory, explains the phenomena of both
the Tragedy of the Commons and the
Prisoner’s Dilemma very well in his 1987
documentary Nice Guys Finish First.

Interesting to note is that
the KillCam was designed as a way
of deterring people from engaging in
negative behaviors like nade spamming
and spawn camping. Although the
KillCam introduced an element of
penalizing the bad behaviors, it also
created a new and very effective vector
for the memes to spread. Measures like
the KillCam are double-edged swords: On
one hand, they punish wrongdoers, but
recruit more wrongdoers on the other.
At the end of the day, Modern Warfare’s
internal rules gave birth to an optimal
winning strategy that was not in line with
the desired behavior of players.

IN CONCLUSION Designers should take
great care when creating the internal
rules of their products, as the in-game
culture that the game will inevitably have
can have a greater impact on the product
than your own direct design input. The
meme can be a very powerful friend or
foe, and although the meme cannot be
tamed, we are ultimately the architects of
the environments in which they spawn.

Nils Pihl is one of the founders of Mention LLC
(www.mentionllc.com), an international consulting
fi rm that specializes in engagement design,
behavioral engineering, and game mechanics.

Editor’s note: This article is an excerpt from an
article originally posted on Gamasutra. You can
fi nd the full text here: http://bit.ly/12hReNW

 039
C R O S S - P L AT F O R M _ N i l s Pi h l

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

039
C R O S S - P L AT F O R M _ N i l s Pi h l

CALL OF DUTY: MODERN WARFARE

http://www.mentionllc.com
http://bit.ly/12hReNW

0
4

0
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

GameMaker Studio v1.1.7
YoYo Games
www.yoyogames.com

[Free version available; paid licenses
range from $50 to $500]

S Y S T E M R E Q U I R E M E N T S

Windows XP/Vista/7 (32-bit and 64-bit)
512 MB RAM
Screen resolution of 1024 x 600

P R O S

1] Low-code approach good for
introducing basic game-dev concepts

2] Accessible price tiers
3] Multiple-platform export features can

save time and maximize exposure

C O N S

1] UI is clunky and hard to navigate
2] Behaviors are tricky to edit in more

complicated projects
3] Debugger lacks advanced features

040 t
T O O L B OX _ N o e l L l o p i s

GameMaker Studio is an integrated development environment for the creation of 2D games mostly
through GUI actions rather than a programming language. It can create executables that run on
Windows, Mac OS, iOS, Android, Windows Phone 8, and HTML5. GameMaker has a long history,
starting way back in 1999. Since then, it has evolved with the times, added a lot of necessary features,
and recently was bought by YoYo Games and re-released as GameMaker Studio. Along the way,
GameMaker produced many thousands of little games, and a few gems like the free version of
SPELUNKY, and more recently HOTLINE MIAMI. (Note that while earlier versions of GameMaker ran on
multiple platforms, GameMaker Studio only runs on Windows.)

GAMEMAKER STUDIO v1.1.7

MAKING GAMES WITH GAMEMAKER GameMaker Studio’s goal is to allow people to make
games without having to deal with actual programming languages. Most everything is done
through a GUI, clicking on buttons and dragging and dropping components. GameMaker Studio
does a great job of distilling the basic concepts needed for most 2D games, and provides some
well-chosen fundamental building blocks: Sprites, Rooms, Objects, Events, Actions, and Timelines.
It also offers some advanced functionality such as 2D physics and even some 3D support.

For users to be able to create games without having to resort to a programming language,
the software’s user interface needs to support and expose a wide range of concepts. GameMaker
Studio does a great job of presenting lots of events that objects can respond to, and letting you
hook up a huge variety of actions in response to them.

For example, creating an enemy that moves horizontally and bounces off the wall is extremely
simple. You need to start by creating a sprite (possibly animated) that will represent the enemy.
Then, you create an object that uses that sprite for a visual representation. On the object itself,
you can add the event handling: The Created event sets a horizontal speed there, and the collision
event against walls reverses its velocity. Done.

At any point, you can press the Play button and GameMaker Studio will build your game and run
it in a window. Building and running the game—at least with small projects and a fast computer—
only takes a second or two, so you can iterate fairly quickly.

USER INTERFACE NEEDS WORK For an environment that attempts to substitute programming
languages with a GUI, I would expect a slick, super-streamlined user interface. GameMaker
Studio’s UI is not; it’s clunky, ugly, and nonstandard. Maybe it’s because GameMaker Studio is
still built on top of the old codebase from the original GameMaker (which was originally written in
Delphi), but in any case, it’s a chore to use it.

http://www.yoyogames.com

0
4

1
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

HOTLINE MIAMI

The UI just feels substandard, from the initial ugly green-
on-black editor colors (which can fortunately be changed), the
glitchy behavior while resizing windows, a clutter of multiple
fl oating windows in a parent area, or not having visual
feedback about where an item will be dropped when you drag
it over other items. You could dismiss those things as simply
being effects of using an outdated GUI library, but then there
are some inexplicable design choices, like an inability to copy
and paste events between objects, and just one level of undo.
And forget about any modern amenities like autocompleting
variable names in the (fortunately few) places you have to type
things. The GUI would have been subpar back in 1999, but
today it’s simply inexcusable.

TAKING STUDIO FOR A SPIN GameMaker Studio does a good
job of getting a new user up and running very quickly through
extensive tutorials and sample projects. I followed a couple
of the tutorials and immediately had a good idea of how to
go about implementing just about any simple 2D game. I do
wish that it also included a good reference document in HTML
format, or had one available online instead of the clunky
Windows Help fi le one.

Creating new objects and behaviors is really easy, and
you can put together a basic game in a matter of minutes.
GameMaker Studio provides a huge range of events and
actions available to compose your behaviors. This is one place
where it shines due to its long history, as I’m sure they were
accumulated over time as different games needed them.

In the rare case that an action for what you want is missing,
you can create your own custom action in GameMaker

Language (GML). But you can really do a surprisingly large
variety of games without having to touch GML, so in that
respect, GameMaker Studio is a success.

Debugging support is decent, but not great. You can run the
game, pause, examine variables (by typing them by hand), and
step execution frame by frame. Unfortunately, you can’t add
breakpoints or step through the logic that occurs in each frame
from the debugger, and considering how logic is spread among
a bunch of objects, each reacting to events and triggering other
events in turn, it’s a pretty signifi cant omission.

One-button publishing for different platforms is a very
attractive feature on paper. The version I reviewed only had the
ability to publish to Windows (as an installer or a zip fi le), but
other versions can create App Store-ready iOS executables.
Dealing with different types of input for different platforms is
a challenge (mouse vs. gamepad vs. touch), but GameMaker
Studio manages to abstract out most of those differences. Your
objects can respond to specifi c input events, whether they were
generated by a keyboard press or a screen touch. Obviously,
interface features that rely on inputs with no analogous
touchscreen input (like mouse hover, for example) will need to
be re-implemented, but most basic input functionality will work
across platforms just fi ne.

GameMaker Studio’s fundamental space units are
pixels, which I found shocking. That makes the game logic
dependent on your resolution, which is a bad idea for any kind
of multiplatform (or for a platform that has many resolutions).
GameMaker Studio does alleviate some of those problems by
providing a scaling factor to match the target device’s native
resolution, but that might result in slightly blurry graphics.

tt 140140140T O O L B OXT O O L B OX _ N o e l L l o p i s

0
4

2

RICK O’SHEA.

042 t
T O O L B OX _ N o e l L l o p i s

Similarly, the default unit of time is a “step,” which is the
time of a frame (either at 30Hz or 60Hz). Apart from being a very
counterintuitive way to measure time for new users (how long is
5,000 steps?), it also means that running at a different framerate
(either because it’s a different platform or because the game
performance bogs down at some point) will cause the game to
slow down or speed up. Fortunately the program provides some
ways to get the real time elapsed for the current frame, which you
can use in your calculations, but all the event code and alarms
rely on “steps.”

GameMaker Studio provides source-control integration by
integrating with Subversion already installed in your development
PC, which is interesting (and actually the way I prefer it). However,
that might not be the best way for the intended audience, since it
requires them to install Subversion separately. Instead, I would
have considered having some kind of simple source control built
in to the IDE, or maybe not even provide any kind of source control
at all.

One major fl aw I found is the inability to reuse behaviors of any
kind (without writing custom GML scripts). It seems that making
different enemies with some shared behavior involves copying and
pasting the same event handling and actions into the new enemies.
This is an extremely error-prone process, and can take up a lot of
time as soon as you start making some changes. I’m glad they kept
things simple and didn’t do some kind of inheritance or component
system, but I was hoping to be able to group some events or
actions and reuse them easily across objects.

This leads me to the biggest fl aw of GameMaker Studio: Even
though you can create very simple behaviors really quickly, the
resulting logic becomes extremely complicated for anything but
the most trivial projects. The fl ow of actions is spread between
many different events and alarms, instead of expressed simply in
a single page of code, and it’s simply impossible to follow. Making

signifi cant changes to an existing game is a very delicate process,
and when combined with the lack of good debugging, makes
development of any kind of medium- to high-complexity game
extremely diffi cult.

WHO ARE THE GAMEMAKERS? The question in the front of
my mind while I was using GameMaker Studio was “who is this
intended for?” YoYo Games’s we bsite claims that it’s for “entry-level
novices and seasoned game development professionals equally.”

For seasoned professionals: I would not recommend GameMaker
Studio for quick prototyping. Even though you can get some simple
objects moving on the screen quickly, iterating on behaviors
becomes very cumbersome and slow because of the constant
clicking and dragging. Once you have a basic main loop update and
rendering, adding behaviors in code is much, much faster.

In spite of my criticisms, I think GameMaker Studio is an
excellent tool for teaching children or people with absolutely no
programming knowledge how to make games. The skills they
acquire with GameMaker Studio won’t be transferable to other
environments, but they will learn about the fundamental concepts
that go into making a game: the different components, how they
relate to each other, what kind of logic is involved, and so on.
Learning that alone is arguably the biggest step toward starting to
make games. The fact that they can hit the ground running, play
sounds, and see things moving on screen right away is a huge
boon to keeping motivation high and allowing people to learn
quickly. Afterward, they can move to a code-based environment like
JavaScript, Python, or even Codea on iPad. t

Noel Llopis is a game-industry veteran turned indie-game developer. He avoids
violence in his games and instead relies on creativity and sharing. His latest
games include CASEY’S CONTRAPTIONS and FLOWER GARDEN.

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

 ip 043
I N N E R P R O D U C T _ J o n a t h a n B e i l i n

WHY MAKE MOBILE STUFF? As
engineers, we turn assets and ideas into
workable products. We are gatekeepers
between ideas and usable things, as
well as improvisers who must fi ll in the
unavoidable gaps in spec docs. Having a
holistic view of how your code will perform
with people and machines is important in
the process of developing games that feel
good and are easy to use. And sometimes,
platform paradigm shifts make us
reconsider certain interface patterns;
for example, the lack of a “hover” state
in touch devices has effectively killed the
tooltip, and as a result developers must
place more emphasis on having buttons
that are obvious in their function without
further interaction. In terms of game
control itself, there are dimensions to
explore related to directness of control
vs. abstracted control and the increased
physical performativity.

GETTING SET UP For this tutorial, you’ll
need a Mac running OS X 10.7 or above,
and an iOS device running iOS 5.1 or
above. Register an Apple ID (you already
have one if you use iTunes or iCloud) at
https://appleid.apple.com, and use the
Mac App Store application to download
and install Xcode. You can also fi nd Xcode
at Apple’s Developer site, but the Mac App
Store version gets delta patches, which
will considerably speed up your updates.

Next, download the latest release of
openFrameworks at www.openframeworks.

cc/download (as of this writing, the latest
version is 0073) and unzip it. Open the
directory in the Finder. You can open
some fi les in the Examples directory to
poke around some of the code before
diving in to your own app. Each example
explores a different bit of functionality of
openFrameworks or the iPhone, including
the touch sensors, the IMU, and the GPS.

A PROGRAM, STEP-BY-STEP First,
create a new project. In order to ensure
that the proper libraries are included,

openFrameworks now includes a
project generator, so just open the
projectGenerator directory, run
projectGenerator.app, and name the project
whatever you want.

Next, click on Addons to see some of
the libraries that have openFrameworks
wrappers. You don’t need to select
ofxAccelerometer, ofxiPhone, or
ofxMultiTouch, as those are included by
default. Once you’re done browsing the
libraries, select “Generate Project,” and
open the generated project—we’re going to
start digging in.

The fi le main.mm contains some
boilerplate code to set up the rendering
context. If you’re on a device with a
high-DPI/Retina display, you’ll want
to get a reference to the app’s window
and enable Retina support. After that,
you’ll call ofSetupOpenGL() to set up the
rendering context. Change the arguments
to match the resolution of the device that
you are targeting (see Listing 1). Then
run your oF app—in this case testApp.
The meat is in testApp.h/mm (the .mm
extension indicates that the fi le contains
objective-C++, a dialect that allows
objective-C and C++ to mingle). If you wish,
you may rename the fi les and the class
contained therein (don’t forget to change
the ofRunApp call in main.mm to match) to
something more appealing.

Note that you can expand iOS + OFLib.
xcodeproj > addons > ofxiPhone >
src to see all the oF wrappers for iOS

SPELLTOWER.

Intro to openFrameworks
TEST THE MOBILE GAME DEV WATERS WITH OPENFRAMEWORKS

Mobile development is all the rage, but getting started can be a chore for console or desktop developers due to
platform differences. If you work with Android, you can use C but have to deal with a large quantity of disparate
devices. If you work with iOS, you generally have to touch some Objective-C. But if you want to have a feel for
programming interactivity on touch devices without committing to a whole new environment, consider trying
openFrameworks, a multiplatform creative coding environment in C++ that will get you a leg up on having
an update/draw loop, a drawable canvas, and a way to read input from the various sensors on the device. It’s
not the right platform if you want to make the next INFINITY BLADE, but it powers some high-quality, popular
games like SPELLTOWER and newer versions of SUPER HEXAGON, so it is by no means a dead end.

0
4

3

https://appleid.apple.com

 ip ip044 ip
I N N E R P R O D U C T _ J o n a t h a n B e i l i n

0
4

4
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

[LISTING 1: INITIALIZING THE WINDOW, OPENGL CONTEXT, AND OF APPLICATION.]

int main(){
 //
 // Retina-specific code
 //
 ofAppiPhoneWindow *iOSWindow = new
ofAppiPhoneWindow();
 iOSWindow->enableRetinaSupport();

 //

 ofSetupOpenGL(iOSWindow, 640, 960, OF_
FULLSCREEN);
 ofRunApp(new testApp);
}

LISTING 2: ADDING SHIP STATUS VARIABLES.

// Add vars for ship status
class testApp : public ofxiPhoneApp {
�
 void deviceOrientationChanged(int
newOrientation);

 private:
 // Ship status
 ofPoint currentPosition;
 ofPoint thrust;
 float angle;
}

LISTING 3: INITIALIZING THE SHIP STATUS VARIABLES FROM LISTING 2 IN THE
SETUP() OF TESTAPP.MM.

// Set up variables
#define SCREEN_WIDTH 640
#define SCREEN_HEIGHT 960

void testApp::setup() {
 ofBackground(0, 0, 0);
 thrust = ofPoint(0,0);
 angle = 0;
 currentPosition = ofPoint(SCREEN_
WIDTH/2,SCREEN_HEIGHT/2);
}

LISTING 4: USING THE DRAW() ROUTINE TO DRAW OUR SHIP.

// Draw a triangle to represent the ship
void testApp::draw(){
 ofPushMatrix();

 ofTranslate(currentPosition.x,
currentPosition.y);
 ofRotate(ofRadToDeg(angle));

 ofSetColor(0, 50, 200);
 ofTriangle(-5, 0, 0, -15, 5, 0);

 ofPopMatrix();
}

LISTING 5: WRITING OUT OUR TEST GAME’S BASIC MOVEMENT PARAMETERS.

// Add a variable to store touch data
class testApp : public ofxiPhoneApp {

 float angle;

 // Input
 ofPoint lastTouch;
}

// Handle touch events to control the ship

void testApp::touchDown(ofTouchEventArgs &
touch){
 lastTouch = ofPoint(touch.x, touch.y);
}

void testApp::touchMoved(ofTouchEventArgs &
touch){
 // Find touch vector
 ofPoint currentTouch = ofPoint(touch.x,
touch.y);
 thrust += 0.16f * (currentTouch -
lastTouch);

 // Update angle
 angle = atan2(thrust.y, thrust.x) + M_
PI_2;

 lastTouch = currentTouch;
}

// Apply changes to ship’s position based on
thrust in update
void testApp::update(){
 // Update position
 thrust *= .99f;
 currentPosition += thrust;

 // Boundary wraps
 if (currentPosition.x > SCREEN_WIDTH) {
 currentPosition.x = 0;
 } else if (currentPosition.x < 0) {
 currentPosition.x = SCREEN_WIDTH;
 }

 if (currentPosition.y > SCREEN_HEIGHT) {
 currentPosition.y = 0;
 } else if (currentPosition.y < 0) {
 currentPosition.y = SCREEN_HEIGHT;
 }
}

LISTING 6: ADDING A TRAIL OF SMOKE PARTICLES.

// Add container to store prior positions of
the ship
class testApp : public ofxiPhoneApp {
�
 // Input
 ofPoint lastTouch;

 // Trail point container
 deque<ofPoint> pointList;
}

void testApp::update(){
 �
 // Append current point to list for
drawing smoke trails;
 // offset by 5px so it appears to be
coming from behind the ship.
 pointList.push_
back(ofPoint(currentPosition.x - (5 *
sin(angle)), currentPosition.y + (5 *
cos(angle))));
 if (pointList.size() > 50) {
 pointList.pop_front();
 }

}

// Draw circles from past position of
increasing size to represent smoke trail.
void testApp::draw(){
 ofSetColor(255, 255, 255);
 for (int i = 0; i < pointList.size(); ++i)
{
 ofCircle(pointList[i].x, pointList[i].y,
i/6.0f);
 }

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
4

5

core functionality. The “sound” and “utils”
directories are particularly juicy.

Now look over the boilerplate in the
sample app. You’ll initially see a list
of slightly more than a dozen empty
methods. The setup() method should
be self-explanatory; it is called once on
program launch. The update() & draw()
methods are called every frame, in that
order. exit() is called once, when the
program exits. Clean up here.

The remaining methods all handle
events. The touch events should be fairly
obvious: Whenever a user touches down,
moves a touch, or ends a touch, an event
occurs that passes the touch (an object
with an ID and some coordinates and
other metadata) to your program. The
lostFocus() and gotFocus() events occur
when a user backgrounds or resumes your
app, respectively. Your app will no longer
receive slices of processor time in the
background, but its memory contents will
be preserved until the system starts to run
out of memory (more on that
later). Take note of this if you’re using
time steps in your update function,
because you might have an enormous
timestep between updates if the app has
been backgrounded.

DEVICEORIENTATIONCHANGED()
is called when a user rotates their device,
say, from portrait to landscape. Note that
there are two portrait orientations, portrait
and portrait upside, and two landscape
orientations, landscape with the home
button on the left and landscape with the
home button on the right, as well as face-
up and face-down. (These are the offi cial
descriptions; this level of verbosity will
become familiar if you engage further with
the iOS SDK.)

GOTMEMORYWARNING() is called
whenever iOS starts to run out of memory.
It may not be your fault, and this may
get called while your application is in
the background. If you take up very little
memory, or if your app frees suffi cient
memory when asked, your application
remains open. If your app uses much
memory and does not free much, it will
be shut down immediately, preventing the
user from quickly resuming the app.

For the sake of brevity, we’ll use
member variables of the openFrameworks
testApp class to handle our data storage.

DRAWING Let’s draw a triangle to
represent a space ship. Add member vars
to testApp.h (Listing 2), and initialize them
in the setup() of testApp.mm (Listing 3).
ofPoint is a standard Vector3 class.

Now we’ll want to draw the ship
in the draw() routine (see Listing 4).
Fortunately openFrameworks’s wrappers
all have conveniently explicit names:
ofPushMatrix(), ofTranslate(), ofRotate(),
and ofPopMatrix() all do exactly what they
sound like they do (and, in this case, call

the similarly named glPushMatrix() and its
associated functions). Note that whenever
you call ofSetColor(), everything you draw
will be that color until you call ofSetColor()
again. You can pass RGB or RGBA values
to ofSetColor, although you will have
to call ofEnableAlphaBlending() (and
ofDisableAlphaBlending() when you are
done alpha blending) to render with alpha.
ofTriangle takes three ofPoints or six
fl oats to defi ne the points of the triangle.

Now that we’re drawing to the screen,
we can easily visualize interaction. As
you can see in Listing 5, we’ll let the
player control the ship by using touch-
movement to defi ne vectors of “thrust,”
similar to the game BIT PILOT, and we’ll
wrap the ship around the edges of the
screen as in ASTEROIDS. Note that we’re
performing some tasks in the touchMoved
event handler that might make sense in
update(); this is to ensure that we don’t
miss any input between frames.

Right now, our ship is small and can
move quickly, which makes it easy to lose
track of. In Listing 6, we’ll make our game
draw a tapered trail of smoke particles,
which will make the movement of the ship
easier to track and will look kinda cool in
the process. Gamefeel!

NEXT STEPS Now we’re going to skip the
rest of the “making an actual game” part
and focus on the other steps you’ll take to
make the product App Store-ready. You’ll
need a homescreen icon, a launch image,
and an app name. If you click on the blue
icon in the sidebar that reads “mySketch,”
(see fi gure below), you’ll be able to specify
valid device orientations and drag in
normal-DPI and high-DPI icons and launch
images. (The “Prerendered” option for the
icon defi nes whether a shiny band is drawn
across the top half of the icon.)

To change the name of the app as it
appears on the home screen, select the
mySketch target, click build settings,
and fi nd the “Product Name” fi eld. When
you’re ready for release, register your
app on iTunesConnect, in Xcode select
Product->Archive (note that you’ll need
to have an iOS device, not a simulator,
selected for your scheme in order to
archive), then go to the Organizer (the icon
for which is in the upper-right), select your
build, and click Distribute. Those are the
basic steps to getting on the App Store; by
now, you should have enough information
to readily search for answers should you
become stuck. ip

Jonathan Beilin is the iOS person at DIY.org,
a self-directed learning and invention site for
young makers.

Our game, before (bottom, left)
and with smoke particles.

Editing project
metadata in Xcode.

 ip 045
I N N E R P R O D U C T _ J o n a t h a n B e i l i n

http://testApp.mm
http://DIY.org

0
4

6

046 pp
p i x e l p u s h e r _ S t e v e Th e o d o r e

DECLARATION OF DEPENDENCE
NO ARTIsT Is AN IsLAND

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

It all depends If you want to stay
sane in this kind of work, you need to
get a good handle on the way your work
relates to that of other people around you.
Changes can flow from one part of the
production to another in unexpected ways,
and if you don’t master the complex web
of dependency between people and files,
you’ll be worn down by it.

To stay sane, you need good forensic
tools for understanding and tracking
dependencies between files. This ability,
unfortunately, does not typically come
standard with version control software,
largely because there are such a
bewildering array of possible relationships:
models that use textures, animations
that share rigs, levels that include props
and scripts—the list goes on forever. It’s
impossible to list them all in detail, but
on the highest level there are basically
three kinds of dependencies: direct
dependencies, asset dependencies, and
implicit dependencies.

dIrect dependencIes Simple
relationships, where one file depends on
a handful of others to do its job, are the
most common example of interdependence.
The classic examples are models that
use texture files, or environments that
include references to props. In most cases,
these kinds of dependencies are explicitly
recorded in a Max or Maya file as texture or
file references.

Because simple dependencies are direct
parts of the tools we work in every day, they
can be supremely irritating. Luckily, though,
the problems they cause are mostly minor.
When you forget to check in a texture or
referenced model, the next user to open the
file will quickly discover what’s missing (and
won’t be able to make new changes until the

oversight is fixed). Of course, this doesn’t
mean these problems aren’t infuriating:
Try checking in a file that spams 50 dialogs
about textures that you included from your
thumb drive and see what happens if you
don’t believe me.

If you want to be a real professional—
and worry about the quality of your secret
Santa gifts—you need to be diligent
about managing your own dependencies.
Carefully prepping your check-ins and
making sure to work on the latest versions
of other people’s files are the basics of
good manners in our business.

Still, people are fallible, so it’s wise to
provide artists with tools to police these
kinds of relationships. These could be
as simple as a game engine providing
predefined set fallback textures that appear
in place of required files: As long as these
are garish enough to attract attention,
they can alert team members to missing
dependencies without actually crashing the
game and bringing development to a stop.
More helpfully, tools can check art files for
dependency relationships and make sure
that relevant files are always checked in
together. A Maya script that ensures files

can’t be referenced from outside the main
project directory means no more thumb-
drive embarrassments. A Perforce trigger
that warns “The model you’re trying to
check in uses two textures that are not
currently in source control—would you like
to add them?” takes only a few hours to
create, but can save many times that over
the course of production.

asset dependencIes The next major
type of dependencies come up when one
complete asset includes others—each of
which may itself be a small set of simple
dependencies. A common example would
be a model of a house that includes
elements from a library of standard
windows, doors, and appliances. Each
of the included files reference shaders
or textures of their own—or potentially,
even more assets with their own inputs.
This network of inputs and outputs can
quickly become very complex. If you’re
familiar with Maya’s Hypergraph or Max’s
Schematic view, you get the idea—and
you know how quickly these kinds of webs
of dependencies become impossible to
disentangle visually or mentally.

The complexity of asset dependencies
makes it hard for an artist to unravel the
entire web of relationships when something
needs to be tracked down. Consider the
problem facing an animator working on
scene who notices something wrong with
one of the characters’ hats. Mentally, it’s
obvious (that guy’s hat looks wrong), but
figuring out where the bad hat came from
requires working backward through all of
the references until the right bit is found. It
might be buried two or three layers of file
references deep.

Of course, the animator trying to find
the bad hat may not even be poking through

We like to think of ourselves as free spirits. We’re artists! Independent and creative people who march to the beats of our
own drums. Of course, most of us don’t have the luxury of actually living that way—outside the indie-est end of the indie
scene, most of us spend our days as parts of teams (often enormous teams). We get frustrated by the creative costs of
technical tunnel vision—the way it stifles creativity, generates bureaucracy, and eats away at the pride of ownership that
ought to make this job so much fun. On a less exalted plane, the fact that we are small cogs in big machines involves a lot
of down-to-earth frustration and hassles. The fact is, we’re dependent on each other—and so are our files.

We suffer from the sheer friction generated by lots of people—even smart, professional people—working on their little
isolated projects, sub-projects and sub-sub-projects. We often experience the complex set of personal and technical
relationships embedded in our workflows as hassles. You come in today, sync up while grabbing coffee, and discover that
somebody redid the brick texture you were using, which made your charming red-brick cottage looks like an ugly 1950s
housing project. Or maybe you awoke to find your email overflowing with nastygrams from the design department: Your
innocent effort to smooth out a hitch in the walk cycle has broken combat for half the maps in the game. This is the gritty
reality of working in a highly interdependent medium where nothing really stands on its own. It’s a pain.

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
4

7
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e
0

4
7

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
4

8

something straightforward like a Max fi le
reference dialog. The hat may be called
by a bad line of script or an incorrectly
formatted entry in “character_hats.xml.”
When the dependencies move out of the
relatively simple world of Max and Maya,
things really get hairy.

IMPLICIT DEPENDENCIES Implicit
dependencies occur when changes to
one fi le affect the ways in which other
fi les work. The classic example of implicit
dependency is a character skeleton. Most
engines require a character’s skeleton to
be the same everywhere it appears. If an
artist accidentally renames, deletes, or adds
a bone to an existing character, the entire
pipeline may grind to a halt—despite the fact
that the dozens (or hundreds) of fi les affected
by this change are themselves unchanged,
and probably still look the same to someone
who opens them up in Max or Maya.

Implicit dependencies are evil. They can
break existing content completely or change
its meaning without any warning. They are
also quite diffi cult to track, because they
don’t correspond to simple fi le references.
In the case of the character skeleton, for
example, the problems are going to show
up all across the production as cryptic
error messages or in-game bugs. A simple
dependency is self-diagnosing, since when a
model raises an error fl ag that says “I can’t
fi nd texture X,” the answer is obvious: Go fi nd
texture X. Implicit dependencies, however
are merely implicit—so it’s not altogether
clear where the problem lies, unless you’re
one of the technologically privileged caste
who knows all of the unwritten rules of
your game. Most likely, fi nding and fi xing
the problem will involve a long troll through
recent changes and a lot of speculative talk,
looking for something “suspicious” that gives
away the problem. That’s hardly an effi cient
use of anybody’s time.

The only real solution to the problem of
implicit dependencies is not to have them.
When a dependency relationship between
fi les exists, it should be made explicit
somehow. For example, the dependency
between a master skeleton fi le and the
animations that depend on it could be
expressed by using the fi le referencing
functionality inside the DCC tool. This
would automatically push changes from
the master fi le to the animations. Use of
referencing in a case like this turns a nasty,
potentially dangerous implicit dependency
into a vanilla simple dependency, albeit one
which, depending on the pipeline, might also
necessitate a reprocessing or re-export of
the fi les in question. Nonetheless, it’s an
improvement over leaving the relationship
between fi les lurking in the tangled
underbrush of the production.

Alternatively, an implicit dependency
can be made explicit by recording it in a
database or by creating a fi le (usually called a
“sidecar fi le”) whose job is to explicitly track

the relationship. For the animation example,
there might be an XML fi le that lists all of the
animations that depend upon the master fi le.
When the master is changed, the users can
be warned about the large number of fi les
that may need to be updated. Conversely,
when the individual animations are opened,
they can consult the tracking fi le to make
sure they are in sync with the master and
warn users if an update is required. Tools
can use the master fi le to know which fi les
need to be fi xed. Moreover, the master
fi le has version history so changes in the
relationships can themselves be tracked.

Explicit tracking of dependencies
outside of the DCC tools also makes it
easier to track relationships both upstream
and downstream. Max or Maya can only
track upstream dependencies: A model
fi le knows which textures it needs, but
the texture fi les have no idea how many
models, if any, are using them. If those
relationships are tracked in sidecar fi les
or a database, the entire network of
connections can be visualized and graphed.

BREAKING THE CYCLE OF
DEPENDENCY The overall dependency
network for a big production can be
staggeringly complex, but the basic
building blocks are just fi les and the links
between fi les. It’s fairly simple for scripts

to collect this information by analyzing art
fi les or sidecar fi les. Some teams prefer
to do this in an offl ine tool; others put the
entire web of relationships into a relational
database. Once you decide to tackle the
problem, implementation isn’t really that
tough—computer science has lots of tried
and true approaches to understanding
dependencies. The real challenge is
presentation: getting this information in
front of the team in a usable format. It
seems natural to try to view dependency
information as a tree or node view, similar
to the outliner or graph views in DCC tools.
This works well for small subsections of
the project (say, for understanding the
inputs of a single asset) but breaks down
quickly for larger amounts of data.

On the other hand, websites—which
are built around hypertext links between
pages—are a natural way to represent the
links between assets: Once you’ve analyzed
the graph, creating HTML or wiki pages
that correspond to your assets makes it
easy for artists to navigate this complex
information using familiar tools.

The asset page for a model would include
upstream links to the textures included in
the model, as well as downstream links to
scenes or game levels that use the model. It’s
also a good idea to include summary pages
for tracking big-picture items: total numbers
of assets, resource usage, assets grouped by
review status, and so on.

With a good dependency tracking
system, it’s possible to see optimizations
that would be invisible on the level of
individual fi les. For example, you could
fi nd a subset of the prop library that has a
high degree of texture sharing and hence
takes up less memory as a unit, or spot
which character has the most expensive
animation set and needs to be trimmed
down. Also, seeing the dependencies
gives artists advanced warning about the
potential impact of their decisions. When
you’re thinking about tweaking a prop, it’s
nice to know if it shows up in fi ve houses or
50 before you try anything too fancy.

Some people will tell you “there’s
no ‘I’ in ‘team, ’” but for us artists, there
really is. Our working and creative lives
are tough enough without the constant
drizzle of minor irritants that come from
badly managed collaboration. Good tools
and good practices can make this a lot
less irritating, freeing us to concentrate on
important stuff—like bemoaning our lack of
creative freedom and the artistic blinders of
our mass-market medium. pp

Steve Theodore has been pushing pixels for more
than a dozen years. His credits include MECH
COMMANDER, HALF-LIFE, TEAM FORTRESS, COUNTER-
STRIKE, and HALO 3. He’s been a modeler, animator,
and technical artist, as well as a frequent speaker at
industry conferences. He’s currently the technical
art director at Seattle’s Undead Labs.

TOP: Graph views are an excellent way to understand
dependency relationships CENTER: ... Except when
they’re not. Graphs work well for a local view of
dependencies, but they’re worse than useless for
getting the big picture. BOTTOM: An asset-centric
view makes more sense than a big graph. Find the
asset fi rst and then see it’s inputs and outputs.
This example is a dedicated app, but the same
information could easily be in a wiki page.

048 pp
P I X E L P U S H E R _ S t e v e Th e o d o r e

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

 d 049
D E S I G N _ D a m i o n S c h u b e r t

 d 049
D E S I G N _ D a m i o n S c h u b e r t

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
4

9

LIFE AFTER SHIP
DESIGN YOUR

GAMES TO HAVE
AN EXTRA LIFE

OR THREE
When Magic: The Gathering fi rst entered the gaming
scene back in 1993, the mere idea of a game based on an
ever-evolving pool of collectable cards was just a zygote
of an idea. Richard Garfi eld and the rest of Wizards of
the Coast knew the game had real potential, but no one
knew how the game experience would really play out.

It’s not surprising that they got some things wrong.
Their limited playtesting was not nearly enough to fi nd
all the convoluted strategies players would devise, and
they had no historical data to check for problem spots.
Sophisticated analysis of the game did not yet exist—they
did not know (or fully appreciate) how powerful drawing
cards would be in their game, and thus printed a card
that allowed a player to draw three cards for one mana.
And many of the rules were written ambiguously, so
new expansions that introduced new rules brought in
unexpected confl icts—and made it clear that card rules
language needed to be much more structured and
unifi ed than it was previously.

Wizards of the Coast also underestimated their own
popularity. They expected players to buy a deck and a
couple of booster packs. Hardcore players started to buy
booster packs by the case. Rare cards that Wizards of
the Coast assumed would show up only once or twice
in a deck ended up being highly sought after, and soon
devoted players were packing four of each (the legal
limit) in their decks, and destroying their less-invested
opponents in the process, often in a couple of turns.
The value of the best rares shot into the stratosphere,
creating a legitimate aftermarket for cards.

Wizards has succeeded beyond their wildest dreams,
reinventing the board-game industry (and saving

America’s game and comic book stores) in the process.
But it was clear that Magic had some bad structural
problems that needed to be addressed. Fortunately,
Magic had a winning core game design, which gave
them the resources and time they needed to fi x these
structural issues. Magic was a game that had a long life
after ship, and its game designers took advantage of this
to great effect.

FINDING THE DESIGN SPACE For most board games
and single-player video games, expansion packs are
the norm. Thanks to our age of connectivity, this trend
is now buttressed by downloadable content (DLC) for
games on online platforms. Some games, though,
are uniquely suited for this sort of life after shipping.
Collectable card games, such as Magic: The Gathering
and Pokémon, are built hoping to capitalize on this as a
core business model.

Massively multiplayer titles, such as WORLD OF
WARCRAFT and STAR WARS: THE OLD REPUBLIC, are also
games that beg for a post-launch strategy. Most MMOs
opt to offer players occasional downloadable content
(often for free, but sometimes for a small charge), and
some bolster this with an occasional expansion pack.
Again, the business model is central to the approach
here; subscription models want to keep players engaged
and happy for long, continuous periods of time, whereas
games that depend on microtransactions are content
with people stopping back for a brief visit, to purchase
and consume the new content.

All of this is obvious, of course. What is less
obvious is that designers need to identify their post-

050 d
D E S I G N _ D a m i o n S c h u b e r t

launch realities. What design will allow the game’s expansion
if it’s successful? Is this a free expansion you expect everyone
to acquire? Is it paid for? Is it premium expansion content that
will go on a store shelf, or is it DLC? If it is a competitive game,
are you expanding in ways that are mostly cosmetic, or are you
encouraging players to invest in making their characters more
powerful? If characters are getting more powerful, is there actually
room in the math for that?

PURE ESCALATION In WORLD OF WARCRAFT’S fi rst three
expansion packs, Blizzard simply made the numbers bigger.
Players wanted more levels, more and cooler gear, and tougher
challenges. However, there were some complications. For one
thing, the stats of players had already been increasing—Blizzard
had continued to release new raid content, and added new,
improved gear for each tier of content they added to lure players
into that content.

This meant that people right off the boat in new expansion areas
started in a completely different place. Those who had been raiding
would play through a signifi cant chunk of the new expansion
content without getting any gear upgrades at all, whereas those
who hadn’t would fi nd “standard”-quality items comparable to raid
gear by accomplishing trivial quests, in a desperate attempt by the
designers to close that gap.

But there was a more insidious problem: The power curve in
the game was exponential in nature, which meant for the math to
work naturally, the gains between levels needed to grow bigger and
bigger. As of this writing, a top weapon in the game now offers +947
stamina and deals 1996 damage per second, and this number easily
grows to fi ve digits when combined with abilities and modifi ers. By
comparison, Perdition’s Blade (a top drop off of a Ragnaros from
Molten Core, an early raid) did 61.7 DPS, and has no stat bonus
(other gear he drops offers no more than +22 stamina). The number
of hit points a raid boss today needs to have to survive 25 players
dealing out that much DPS over the course of a 10-minute fi ght
is staggering, and the numbers involved are large enough that
the development team posted a blog to open discussions with the

players about how to bring these numbers back into a sensible
reality (http://us.battle.net/wow/en/blog/3885585).

ADDING COMPLEXITY Hardcore players who love a game frequently
don’t want just more of the same game. This works in some
genres, such as fi rst-person shooters and RPGs, where players
can be satiated with expansions with more maps and more story.
More often, though, these players want more mechanics and rule
tweaks—even those that love the game are bored with it after a
certain period of time. But this, too, raises dangers, mostly of
overcomplicating the game for casual players.

This happens rather frequently in board games; lots of board
games get expansions, and in many cases, the expansion packs
make the game better. Kingsburg took the opportunity to patch the
rules, fi xing a couple of issues that allowed more potential strategies
to emerge. Game of Thrones’s second expansion fi xed balance issues
so fundamental to the game that they were made part of the core
gameplay in the second printing of the game.

In other cases, additional layers of complexity can make the
game impenetrable to new players. Seven Wonders was widely
praised by the board-game community as an excellent short and
casual card game, in large part because it was quick to play and
easy to teach—ideal for playing with casual audiences and/or while
waiting for latecomers to show up on game night. They’ve launched
two expansions since the original release, which have added
tremendous depth, but the game is no longer a casual, friendly game
that can easily be explained to new players in less than fi ve minutes.
A bewildering array of new cards and symbols need to be taught, and
even experienced players need to reach for the rulebook.

The issue is that the two audiences need different things.
Hardcore players need new patterns to learn and new strategic
elements to challenge them. A new player, on the other hand, needs
to pick up all the rules, addendums, and strategies that the more
experienced player has accumulated over years in one massive
information dump.

The hardcore fans of the game, of course, come at expansion
content with all of their accumulated knowledge to date. Raid

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
5

0 WORLD OF WARCRAFT.

http://us.battle.net/wow/en/blog/3885585

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

0
0

5
1

0
5

1

 d 0
4
9

D
E
S
IG
N
_
D
a
m
io
n
 S
c
h
u
b
e
rt

fi ghts in WORLD OF WARCRAFT in the latest expansion are orders
of magnitude more complex than the fi ghts they initially shipped
with, and experienced players welcome facing these more intricate
challenges. However, this means that new raiders have a much
more diffi cult learning curve to overcome than they did in that fi rst
round of content. This accumulation of diffi culty is often forgotten,
although Blizzard has found they need to make a signifi cant effort
to reduce this learning curve as much as possible.

PLANNED OBSOLESCENCE Magic: The Gathering started
in a different place. As they weren’t expecting players to
chase and build all-rare decks, they discovered that the game
was simply way too fast once players did so. Players could
frequently win in three or four turns. Printing more powerful
cards would accelerate the problem. Wizards of the Coast tried
printing cards that were less powerful, and discovered, perhaps
unsurprisingly, that they wouldn’t sell. They quickly hit upon the
idea of a Restricted list for cards (cards that could not be used in
tournament play), to weed out the ludicrous cards, but the play
environment was still too fast, and worse, the sheer number
of interactions that were available in the pool was becoming
impossible to track and design for as new expansions rolled in.

So they introduced obsolescence in their game design,
with the establishment of “Standard” as the primary form of
Tournament play. Standard tournaments allow only the inclusion
of the latest two “blocks” of cards (where a block is comprised of
up to three expansions) and the most recent “core” set to come
out, effectively limiting the card space to a fairly manageable
number. This had a lot of obvious upsides: By waiting a few
expansions, the game could be slowed down as those older,
more powerful cards disappeared from the sets. It also created
an incentive for the players to continually buy new cards, and not
just be content with their old collection.

Planned obsolescence had a lot of subtly deep design
implications as well. Every block could have strongly different
metagames; in one block, counterspells would be common, and in
others, they’d be hard to come by. The designers could make major
changes to the design philosophy of the game, as they did when
they redistributed various spells to different colors in order to even
out the usage of those schools. And perhaps most importantly
(to those of us designers who fancy ourselves as mad scientists,
anyway), designers could take bigger chances with weirder
mechanics, knowing they would eventually rotate out of the pool.

PLANNING FOR GROWTH This is not hugely applicable for
those of us making digital games, except for one core, inescapable
fact: Magic, a game that struggled out of the gate under the weight
of many large structural mistakes, is now designed with expansion
in mind. It is designed, at its very core, to grow, to change, and to
reinvent itself with every expansion. This level of foresight serves
it well: Magic will reach its 20th anniversary in 2013. The latest
Magic expansion, Return to Ravnica, is selling like gangbusters, and
high-level Magic players now play for thousand-dollar purses in
sanctioned tournament play.

We no longer live in a world where a game is ever truly
fi nished. If your game is beloved by fans and sells enough
to satisfy the suits in your building, there will be a desire for
expansion content, for booster packs, for downloadable content,
and even for cosmetic skins. Designers are well advised to plan
for this success, and to know where, exactly, the game’s design
allows them to go to satisfy these appetites. d

Damion Schubert is the lead systems designer of STAR WARS: THE OLD
REPUBLIC at BioWare Austin. He has spent nearly a decade working on the
design of games, with experience on MERIDIAN59 and SHADOWBANE as well
as other virtual worlds. Damion also is responsible for Zen of Design, a blog
devoted to game design issues. Email him at dschubert@gdmag.com.

0
5

1

 0
4
9

 0
4
9

D
E
S
IG
N
_
D
a
m
io
n
 S
c
h
u
b
e
rt

D
a
m
io
n
 S
c
h
u
b
e
rt

D
a
m
io
n
 S
c
h
u
b
e
rt

 d

D
E
S
IG
N

D
E
S
IG
N

D
E
S
IG
N

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

mailto:dschubert@gdmag.com

0
5

2

I BROUGHT MY PENCIL When it comes to mapping the family tree
of our sonorous interactive past, the comprehensive Game Sound
by Dr. Karen Collins traces directly to the roots of our hardware
progenitors. Game Sound covers the fundamentals of sound
synthesis, hardware specifi cations, and an in-depth explanation
of the historical high points of interactive and dynamic sound and
music. For me, reading it for the fi rst time was like taking a Tron-
inspired step into the consoles and cabinets of my youth, colored
with stories from creatives blazing a trail at the forefront of a new
audio technology.

Meanwhile, longtime Game Developer contributor Alexander
Brandon’s Audio for Games takes a more direct and practical
approach to explaining the inner workings of a traditional game
development pipeline with a keen ear toward audio’s role. Not
purely an explanatory text, the book vacillates between presenting
practical knowledge and offering specifi c insights into the tools,
processes, and people skills that make for a smooth work
methodology. While some examples will be seen as dated in today’s
rapidly advancing community, they represent a moment in time at
the beginning of our current, waning console generation whose
fundamentals transcend.

GIMME SOMETHING TO WRITE ON There is no faster way to
gain a deep understanding of the principles of game development
and its relation to audio than to crack open a game and peer inside
its limitless abyss. The Game Audio Tutorial from Richard Stevens
and Dave Raybould lifts up the hood of the Unreal Engine and
walks you through the complex pathways of its audio functionality.
Through step-by-step examples from a working Unreal project,
they provide a hands-on interactive playground that illustrates each
concept. Whether you learn better through reading and following
along to steps detailed in the book, or are the kind of person who
rolls up your sleeves and starts taking things apart within Unreal,
this is a winning combination for trying to decode the lovers’
whispers between game audio and game development.

I DON’T FEEL TARDY A formative part of my education was spent
nose-deep in OpenAL documentation. I might not have understood
much, but there was little else that would give a peek behind the
curtain of game audio at the time. I soon discovered the Firelight’s
FMOD Designer toolset, and shortly thereafter Audiokinetic’s Wwise
hit the scene (not to mention Microsoft’s XACT, which has since
come and gone), providing an accessible introduction to game-ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

052 af
A U R A L F I X AT I O N _ D a m i a n Ka s t b a u e r

Your fi rst foray into the deep waters of a new discipline is easy when Cupid shoots an arrow through the heart of your
interactive amore. Once you’ve become entranced by your newfound love, it’s up to you to put the effort into getting to
know each other a little better. Sound, like love, is often hard to articulate in words, but thankfully these resources will
help fuel the fi re of your growing game-audio relationship.

T H E G A M E - A U D I O L I T E R A T U R E R E V I E W

0
5

3
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

audio concepts that aligned with my emerging knowledge of game
engines. These tools served as a bridge between the programming
language and tools used to create sounds.

These days, though, there are plenty of documentation,
manuals, and resources out there that can help introduce a
new game-audio worker to the tools of her trade. Recently,
the Wwise Project Adventure (which I developed at the request
of Audiokinetic) was released to provide a comprehensive
introduction to creating a Wwise project from start to finish. This
acts as a companion to their already-extensive knowledge base
and brings a cohesiveness to the complete process.

Firelight Technologies has also published some massive
tomes of game-audio wisdom, most recently the Basic
Functionality Guide for its forthcoming FMOD Studio toolset from
Stephan Schütze. While each of these seeks to familiarize the
reader with a given toolset or pipeline, the universal truths of
interactive audio abound throughout. Additionally, many game-
audio hopefuls who are eager to expose their mastery of these tools
and techniques have created countless blog posts and video tutorials,
which can be used simply as a step-by-step introduction to many
interactive audio concepts. You can find many of them chronicled
under their respective tags at gameaudiorelevance.iasig.org.

I THINK THE CLOCK IS SLOW The output of Rob Bridgett over
the last 10 years has been a steady pulse of intelligent, forward-
thinking, and practical writing, and much of it is assembled in
From the Shadows of Film Sound. His articles always seem to arrive
exactly on time, or well in advance of discussions that are at the
forefront of our discipline. Bridgett casts an eye toward insights
gleaned from other entertainment mediums, couples those insights
with the unique aspects of what makes games shine, and envisions a
future for game audio tempered by experience and emotion.

Similarly, George Sanger’s The Fat Man on Game Audio leads
with emotion, serving less as a technical manual and more as a
spirit guide and way of life. By weaving a tapestry of anecdotes,
inside jokes, and startling epiphanies, Sanger brings out the
human side of game-audio history and helps frame the formative
years as a rock-’n’-roll saga of epic proportions. Interspersed
with pictures of living legends and bygone heroines, it’s a lovingly
crafted fan digest that chronicles the beating heart of the industry.

CLASS DISMISSED It’s a gift, in our tiny corner of the game
development world, to have such a rich selection of diverse written
inspiration to choose from. Whether you’re newly enamored or have
shared a long love that continues to deepen, there are more ways
than ever to speak the international language of game audio. af

“I think of all the education that I missed, but then my homework was
never quite like this.” —Van Halen

Damian Kastbauer is rotating approximately 78 RPM at LostChocolateLab.com
and on Twitter @lostlab.

Resources

Collins, Karen (2008) - Game Sound: An Introduction to the History, Theory,
and Practice of Video Game Music and Sound Design.
Brandon, Alexander (2004) - Audio for Games: Planning, Process, and
Production
Stevens, Richard and Raybould, Dave (2011) - The Game Audio Tutorial: A
Practical Guide to Sound and Music for Interactive Games
Bridgett, Rob (2010) - From the Shadows of Film Sound
Sanger, George (2003) - The Fat Man on Game Audio: Tasty Morsels of
Sonic Goodness

http://gameaudiorelevance.iasig.org
http://LostChocolateLab.com

0
5

4
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

054 b
t h e b u s i n e s s _ D a v i d E d e r y

Avoiding tunnel vision
How fellow devs can Help you take in tHe big picture

Back when I worked for Xbox Live, I frequently commented
on the dangers of what I called “developer tunnel vision.”
Nearly all of the devs I spoke with were not paying attention
to a diverse set of industry news sources. What’s more, they
were focused on at most a couple of similar platforms, and
were ignoring the rest of the market. (Back then, everyone
was talking about XBLA/PSN; today it’s Steam/iOS; tomorrow
it will be something else.)

At the time, this seemed completely insane to me—even
suicidal. Didn’t these devs understand how quickly things
change in our industry? How quickly their current efforts
could be rendered irrelevant by shifts in the marketplace, or
by strategy shifts made by the platforms? Developer tunnel
vision... It was so obviously reckless and short-sighted!

But then I started my own development studio. Almost
immediately, I stopped dedicating several hours a week to
following industry news, and found myself giving it a couple
hours a month—if I was lucky. I started fixating on a couple
of major platforms. Turns out, it’s damned hard to make
games, be a good father and husband, and do anything else
at the same time.

Juggling platforms I justify it by comparing myself
to other indies. Spry Fox is actively engaged with Google
Play, Apple iTunes, Amazon’s Appstore, Steam, and a bevy of
web portals like Facebook, Armor Games, and Kongregate.
Compared to most indies who are fixated on just iTunes and/
or Steam, that’s pretty good, right? Of course, since I’ve
stopped reading, I’m missing crucial context about what’s
happening in the very ecosystems that we’re focused on. You
can only get so much insight into the market dynamics of iOS
and Android by studying the performance of Triple Town.
And I’m clueless about emerging platforms, European and
Asian game portals, and too many other things to mention.

This article is partially a mea culpa. Folks who work at
game platforms (myself formerly included) tend to be pretty
judgmental about what developers should and shouldn’t be

doing. Actually being a game developer is an eye-opening
and humbling experience. But more importantly, I want to
take this opportunity to encourage my fellow devs to do the
one thing that can help counteract tunnel vision: Talk to each
other as regularly and often as possible! It takes less time
than comprehensively consuming several news sources a
day and tends to be more fun, too.

By devs, for devs Is there a developer meetup in your
area? Join it. If there isn’t, consider starting one. Places to
start your search: the IGDA chapter list (www.igda.org/chapters)
and meetup.com. Are you a member of a decent industry mail
list? If not, join one and/or make one of your own. The Stanford
Graduate School of Business hosts an open-to-the-public
game industry list that is large and diverse, if unfortunately
quiet. It’s at least a place to start (http://stanford.io/KpCuRP).

Once you’ve connected with other developers, do yourself
and everyone around a favor and don’t keep secrets. Talk
about the games you’re launching. Share details about their
performance. Describe things that surprised you (player
reactions, revenue fluctuations... whatever.) The more
you share, the more the people around you will hopefully
be inclined to return the favor. And their feedback on the
information you share may turn out to be invaluable.

Most game developers are never going to fully avoid
tunnel vision. One way to counteract that is by making
friends and sharing ideas and data. Too many of us are
fixated on our “trade and design secrets.” But odds are
that your secrets are worth less than you think, and your
ignorance is a greater liability than you can possibly imagine.
At least, I’m pretty sure that’s true for me! b

David Edery is the CEO of Spry Fox and has worked on games such as
REalm OF thE maD GOD, StEambiRDS, and Triple Town. Prior to
founding Spry Fox, David was the worldwide games portfolio manager
for Xbox live arcade.

http://www.igda.org/chapters
http://meetup.com
http://stanford.io/KpCuRP

0
5

5
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

 ic 055
I N S E RT C R E D I T _ B r a n d o n S h e f f i e l d

This Thanksgiving I met a young fellow who worked
in games, and we discussed our respective career
paths a bit. He’s a UI programmer/designer combo,
which is a rare and useful bird in the aviary that is
game development. We spoke about the importance
of a cohesive user experience, how UI is the
gateway to that, and how he and one artist had been
given carte blanche to go through his entire game,
screen by screen, to make sure everything was
user-friendly, intuitive, and seamless. UI design
is often one of those things left until the very end
of the development process, which leads to games
with visual experiences that aren’t cohesive, so this
was impressive.

I was reminded of a talk I saw at GDC China, where
Double Fine designer Joe Kowalski discussed
making UI that served to expand or reinforce a
game’s universe, rather than just being functional.
My new acquaintance said yes, this was what he was
trying to do as well, especially since this was a social
game. And when he said the word “social,” I could
actually feel the ellipses forming as the conversation
trailed off.

Then began the apologies: “We’ve actually been able
to strip out all the things users hate, like paying to win,

and all that sort of stuff, and we’re targeting the core,
so hopefully we can actually do something fun with it.”

OLD-SCHOOL DEVELOPERS JUST DON’T LIKE
SOCIAL How familiar was that latter part of the
conversation? How many times, when you learned that
a veteran industry acquaintance was now in social
games, have you had this apologetic back and forth?
They say, “Well, we’re really trying to make this one
interesting,” and “This one’s not that bad, though,”
and you trot out set phrases like, “Yes, it must be
really interesting having that close a relationship with
the player” or, “So how much do you pay attention to
metrics versus intuition?”

Inevitably the conversation returns to the industry at
large, the launch of the Wii U, how HALO 4 is out now,
and whatever else you’re actually interested in. This got
me thinking: Who actually wants to make social games?

Social games are still where much of the money
is (though that money is dwindling), and game
development is a job, after all. Sometimes you have to
take the work and make your rent. But it seems very
few veteran game developers, especially those in the
West, actually want to make these games.

This is what gives rise to the plethora of GDC
talks titled things like “Are social games legitimate?”

WHO WANTS TO MAKE SOCIAL GAMES?
WADING THROUGH THE APOLOGIES

Social Wars.

0
5

6
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

Or the incredibly frequent discussions
of how social games “don’t have to be
evil.” The apologies are right at the tips of
our tongues when we discuss this entire
branch of the industry. They’re simply
not the games we as developers want to
play. There are some mobile arcade-style
games, but there’s also that social mobile
genre where you click things on a timer.

I’ve noticed that veteran game
developers tend to feel that console and PC
games are “real,” while social and mobile
are not. I fi nd myself having this bias, and
I know those who work in social resent
it. The trouble is many of these games
tend not to be skill-based, and they’re not
targeted at developers, demographically.
They’re targeted at our moms and our kids.
But didn’t we get into this industry to make
the games we want to play?

To make sure I wasn’t crazy, I asked
social developers on Twitter: When talking
about your job, do you get defensive? Do you
make excuses? Most said yes, and those
who said no immediately got defensive,
which said something. Partially they’re
just sick of traditional developers looking
down their noses at them. But one person
summed up the sentiment many were
getting at by saying, “There’s some cool stuff
about it, but I’d rather make real games.”

SO WHO DOES LIKE SOCIAL? It’s a
simple answer: Businesspeople like making
social games. Social feels like a business
more than a place where you manufacture
dreams and whimsy. The money is in social
because it’s run and ruled by business
folks who fi rst saw games as a place to
make money, and then pulled in the veteran
developers to make it happen. And who
knows this better than China?

China never had a console market. They
don’t have nostalgia for the past—not for
8-bit chip tunes, not for 16-bit chunky pixel
graphics, not for fl at-shaded polygons. The
old consoles pretty much didn’t exist in that
market, at least not legally or offi cially. (As
an aside, when I gave a talk at GDC China,
one part that had attendees nodding in
agreement was when I said, “Retro is big
in the West—this probably doesn’t make
sense to you.”)

China’s market began with free-to-play,
and that’s the business they know. But it is
a business, and they’re aware of it. That’s
why the market there has gotten so precise
about its monetization. It’s looked at as
a job—one that can make a good deal of
money. There never was another successful
model in the region.

That comes at a cost, of course. I
actually saw an attendee at GDC China

ask of a speaker, during a post-talk Q&A
(paraphrased): “I understand your metrics
for monetization; that’s all well and good.
But do you have any metrics or charts you
can show us related to how much fun we
need to add for retention purposes?”

I can imagine the guy going back to
his team and saying, “No, no, no, guys,
according to this chart here, we’re going to
have to add six more Fun Units if we want
people to keep playing.”

I’m a huge proponent of making the
games you want to play. I want more
diversity in games, but I want that to
come from different people coming in and
making the games they want to play. Let’s
get 60-year-old housewives making our
social games—why not? But let’s also stop
apologizing. If you’re in it to make money
as a business, be straight about it. If you
really enjoy making games for the social
demographic, that’s awesome too. But I say:
If you don’t actually like making and playing
social games, just don’t make them. ic

Brandon Sheffi eld is director of Oakland, California–
based Necrosoft Games, and editor emeritus of
Game Developer magazine. He has worked on over a
dozen titles, and is currently developing two small-
team games for PlayStation Mobile.

056 ic
I N S E RT C R E D I T _ B r a n d o n S h e f f i e l d

BECOME A LEADER
IN DIGITAL MEDIA

With digital media in mind from conception
to completion, the new CENTRE FOR DIGITAL
MEDIA features student apartments, project
rooms and classrooms all designed to inspire
creativity and collaboration. Located in Vancouver,
Canada the new CENTRE FOR DIGITAL MEDIA
ofers a full and part-time Master’s program
that focus on real-time, industry-facing
collaborative projects.

Learn more about our MASTERS
OF DIGITAL MEDIA PROGRAM at:

www.thecdm.ca/programs/mdm

The future of work is at the
new CENTRE FOR DIGITAL MEDIA.
CENTRE FOR DIGITAL MEDIA | www.thecdm.ca

Application Deadline: Feb 15th, 2013

http://www.thecdm.ca/programs/mdm
http://www.thecdm.ca

0
5

7

ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

{ A D V E R T I S E M E N T } { A D V E R T I S E M E N T }

F
O

C
U

S
O

N

+ Business area, halls 4/5
+ Entertainment area, halls 6-10
+ Presentations of news and

innovations of the entire
industry

+ gamescom award
+ Games Developers Conference
+ gamescom festival, City of

Cologne

+ 603 exhibitors from 40
countries

+ 275.000 visitors in total
+ 24,500 trade visitors

(52% abroad)
+ 5.300 journalists from 52

countries
+ More than 120,000 additional

visitors at City-Festival

gamescom at a glance

gamescom 2012 was a
complete success

gamescom 2013: The entire gaming world in one place

The concept of the world's largest trade fair and event highlight for interactive
games and entertainment is unique: it networks the entire value-added chain, from
development and publishing to retail and the consumer. As the largest event of its
kind in the world and the leading trade fair, it provides discussion platforms on all
levels. It covers the entire spectrum of the international gaming scene:

+ PC games
+ Online games
+ Video games
+ Browser games
+ Social games
+ Mobile games
+ Gaming hardware

The concept provides individual platforms for all target groups:

ENTERTAINMENT AREA: emotional gaming presentation for all – the world’s
largest playground for interactive entertainment
BUSINESS AREA: international meeting point for exhibitors, trade visitors and
media representatives
GDC EUROPE: largest European developer conference

gamescom 2013 started with an exhibition space of 140.000 squaremeters. The trade
fair and event highlight for interactive games and entertainment demonstrates with
its leitmotif what the games world can expect in Cologne from 21st to 25th August
2013: The international games community – developers, providers, trade visitors,
media representatives, retailers and thousands of gamers – meets at gamescom
2013 in order to experience together spectacular innovations and to celebrate the
games and entertainment event of the year.

Koelnmesse and its partners, headed by the BIU (the German Trade Association of
Interactive Entertainment Software), are already working flat out to further develop
gamescom as Europe’s central business and entertainment platform. gamescom
awards are further developed due to the great popularity. The BIU also expects
exciting novelties and innovations at gamescom when it comes to hardware and
software innovations.

We look forward to welcoming you to gamescom 2013!

Koelnmesse Inc.
8700 West Bryn Mawr Avenue
Suite 640 North, Chicago,
Illinois, 60631
Tel. +1 773 3269920
Fax +1 773 7140063
info@koelnmessenafta.com
www.gamescom-cologne.com

mailto:info@koelnmessenafta.com
http://www.gamescom-cologne.com

0
5

8

ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

{ A D V E R T I S E M E N T } { A D V E R T I S E M E N T }
F

O
C

U
S

O
N

+ Experience leading a team of
programmers

+ At least 5 years of game
industry experience
(preferably with turn based
strategy games)

+ Expert C++ coding and
systems design experience

+ Excellent communication and
mentoring skills

+ Excellent organization and
time management skills

+ Excellent delegation skills

requirements

Stardock Entertainment
15090 N. Beck Rd.
Plymouth, MI USA
Tel: 734-927-0677
Fax: 734-927-0678
jobs@stardock.com
Please use: Lead Game
Designer for your Subject
www.stardock.com

Lead Game Developer Opening

Stardock Entertainment is looking for a motivated and talented Lead Game
Developer to join their team in Plymouth, Michigan. They offer an opportunity
to lead the technical development of the company and to work with in a
team-oriented, informal and flexible work environment. This position involves
handling the technical aspects of games development and requires excellent
multitasking, organizational, communication, and team collaboration skills. In
this position you will lead, coach and grow a highly motivated and well balanced
team. As the technical lead for the studio, you'll need to have expertise in:

+ C++ coding and systems design
+ Monitoring performance, memory usage, planning/executing performance

and memory optimizations
+ Monitoring stability, troubleshooting and resolving issues
+ Designing, documenting and communicating system architecture
+ Establishing and enforcing coding standards
+ Maintaining a schedule and hitting deadlines

About Stardock

Stardock Entertainment has been developing and publishing games for over two
decades. They are best known for developing the Galactic Civilizations series
and publishing the Sins of a Solar Empire series. Stardock thrives on individual
excellence, adaptability, and fun, while maintaining a structured environment.

mailto:jobs@stardock.com
http://www.stardock.com

0
5

9

ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

{ A D V E R T I S E M E N T } { A D V E R T I S E M E N T }

F
O

C
U

S
O

N
+ 3D modeling and texturing
 • Vehicles
 • Environments
 • Props/Objects
 • Characters

+ 2D concept art
 • Characters
 • Environments
 • Vehicles

+ Mobile development
 • iOS
 • Android

+ Publishing services
 • Vietnam
 • Some other South East

Asian territories

core competencies

Glass Egg Digital Media
REE Tower, 17th Floor
9 Doan Van Bo Street
District 4
Ho Chi Minh City
70000, Vietnam
Tel: +84.8.3943 1389
Fax: +84.8.3943 1388
contact@glassegg.com
www.glassegg.com

Glass Egg Puts Quality at the Heart of it's Game Outsourcing Service

Glass Egg Digital Media is an experienced game outsourcing company in Ho Chi
Minh city, Vietnam. Started in 1995, Glass Egg has grown into a successful game
outsourcing service provider specializing in 3D game assets creation. Up do date,
we have expanded our specialty into other aspects of game development such as 2D
concept art and mobile game development.

Our Culture of Integrity

We deliver what we say we’re going to deliver, on time and on budget. We do not ever
over promise. Making games is hard, and things almost never go as planned. We
understand that a client needs a reliable partner who can be flexible and work with
them in challenging situations. And in then end we are proud to play a part in the
making of great games.

We strive to treat our people well and work every day to build an environment of
freedom, responsibility, and respect for and trust of the people we work with. We have
built a team of the most capable managers and senior producers/artists, having more
than 13 years of experience. Overall, our staff has an average tenure of 7 years. A low
employee turnover guarantees a strong and united team to enhance the efficiency of
each project. In addition, we have two parallel QA system s, both for Art and Tech to
ensure our products are of the best quality a game outsourcing company can provide.

Our Proven Performance Says it All

Production in Vietnam began in 1995 on a small scale with simple 2D background art
and animation; and by 1997 our team was responsible for 100 percent of a game’s
production, including the game coding and programming. In other words, we have
built up experience from many game outsourcing projects. Our portfolio includes
successful AAA titles such as FORZA MOTORSPORTS I – II – III – IV, FORZA HORIZON,
NIGHT AT THE MUSEUM 2, BATTLEFIELD 2, DIRT 1 – 2 – 3, LORD OF THE DRAGONS, THE
CLUB, PURE… We have strong partnerships with big companies such as Microsoft,
Activision Blizzard, Electronics Arts, Namco Bandai, Ubisoft, Codemasters and many
others, who consider Glass Egg as a real help with their game outsourcing demands.

To date, Glass Egg has had a global customer base including many leading game
companies in 4 continents: America, Europe, Australia and Asia.

Our Amazing Staff

We never forget that people are ultimately our most valuable resource. A fun,
comfortable and efficient working environment is what we aim for. We succeed by
remembering “quality” as one of our core values. And our existing customer base
gives us the confidence to meet high demands of game outsourcing.

mailto:contact@glassegg.com
http://www.glassegg.com

0
6

0

ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

{ A D V E R T I S E M E N T } { A D V E R T I S E M E N T }
F

O
C

U
S

O
N

Learn how to apply agile practices such as Scrum and Kanban to creative products
with training by Clinton Keith, the pioneer of implementing agile for video game
development, the author of “Agile Game Development with Scrum” and a Certified
Scrum Trainer and Trained Kanban Coach.

Get hands-on experience through team simulation exercises and instruction
specifically tailored for creative product development professionals. Learn how agile
applies to art and design as well as engineering. Discover how the collaborative
team practices of Scrum and the visualization and flow management tools of Kanban
can have a profound effect on your studio.

Agile/Scrum/Kanban are Proven to Help:

+ Stop project crunch times
+ Predict ship dates more effectively
+ Control and reduce costs
+ Energize teams
+ Focus talent on creating value
+ Eliminate barriers between art, design and engineering

Public and customized in-studio training courses teach iterative product
development to creative teams and leaders at any level of experience. Gain practical
knowledge through real-world examples and lessons from the development veteran
and leader who introduced Scrum to the video game industry ten years ago. The
courses apply simulation, discussion, improvisation and exercises to engage the
creative developer and demonstrate, in action—not theory—how and why agile
works.

Visit the website www.ClintonKeith.com, or email Clinton at clint@ClintonKeith.com
to discover more about agile training and coaching options for creative teams.

" Clinton is a very switched on, genuine guy, and I strongly recommend his
ScrumMaster Course to anyone who is looking to improve the productivity of their
teams with Scrum.” - Kim Sellentin, Blizzard Entertainment

“ The training itself was first rate and received wide praise from our staff both for
content and mode of delivery. Clinton's experience in game development and project
management is a powerful supplement to his expertise in SCRUM methodologies. I
strongly recommend both Clinton and his services.” - Michael Timothy Doyle, EA

“ He is a skilled instructor who brings passion and a tremendous depth of experience
and know-how to his classes.” - Mike Cohn, Mountain Goat Software

www.ClintonKeith.com clint@ClintonKeith.com

Essential Scrum, Kanban and
Agile for Creative Teams
Training by the author of "Agile Game
Development with Scrum"

http://www.ClintonKeith.com
mailto:clint@ClintonKeith.com
http://www.ClintonKeith.com
mailto:clint@ClintonKeith.com

0
6

1

 g
am

e
de

ve
lo

pe
r m

ag
az

in
e

{ A D V E R T I S E M E N T } { A D V E R T I S E M E N T }

F
O

C
U

S
O

N

InnoGames GmbH
Harburger Schlossstr. 28
21079 Hamburg
Germany
+49 40 788 9335 0
info@innogames.de
www.innogames.com

+ Business Partners
 • High quality development

studios
 • Effective media

cooperations
 • Partners for our in-house

affiliate program

+ Talent to boost our human
resources

 • Skilled mobile developers
 • Creative game designers
 • Artistic graphic designers
 • Experienced marketing,

analytics and business
development experts

We are looking for:

Who We Are

With more than 100 million registered players, InnoGames is one of the world´s leading
developers and providers of online games. Our products (Tribal Wars, The West, Grepolis,
Forge of Empires and others) are available in more than 30 languages. Our headquarter
is located in Hamburg, Germany. We also have local offices in South Korea and Brazil.

The Business Principle

Our users have the option of playing InnoGames products completely free of charge
and without restrictions for as long as they want. We also offer players the possibility
of enjoying added benefits in the game by purchasing fee-based premium features.
At the same time, InnoGames places a high priority on providing entertaining
gameplay even without a premium pricetag.

This principle has great advantages to the user. In contrast to traditional PC games, the
product features here are already well-known before the player makes the decision to
pay for added benefits - or not. The specific advantages offered by the premium features
are also transparent. "What you see is what is what you get" is the underlying principle.

In our games, we focus on high long-term motivation. Our game Tribal Wars has
been online for ten years now and continues to attract millions daily.

Partner with us

We have a good working network with trustworthy partners in all important game
markets. As we are rapidly growing, we are looking for promising new partnerships.
Are you a development studio experienced in mobile and browser games? Do you
have high media competence and would like to cooperate with us? Or are you highly
talented and want to boost our human resources? No matter your skill set - we are
eagerly waiting for you. Just contact us

mailto:info@innogames.de
http://www.innogames.com

0
6

2

ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

{ A D V E R T I S E M E N T }
F

O
C

U
S

O
N

+ PC
+ Consoles
+ Mobile
+ Arcade
+ VR/Simulation

Integrate RealD
technologies into any
platform

RealD Inc.
100 N. Crescent Dr.
Beverly Hills, CA 90210
310.385.4000
reald.com/gaming

A Global Leader in 3D Technology
From Mars to the movies to the living room. RealD 3D technologies have enabled
the exploration of distant planets, the projection of the biggest movies of all time
and gaming in lifelike and immersive 3D. Developer of the world’s most widely used
3D projection technology; provider of technologies to NASA and with technologies
licensed to some of the world’s biggest consumer electronics brands, RealD is
focused on creating technologies that deliver premium 3D visual experiences on all
content wherever audiences are.

Today's 3D—Perfecting the Visual Image
A great 3D experience requires both a high-quality display and high-quality content.
Deficiencies in either can sour the experience. With display technology rapidly
improving and moving toward glasses-free 3D, and the worldwide 3D display market
expected to reach 226 million units in 20191, RealD has created technologies for
game developers that remove some of the barriers in creating Stereo3D content.

Traditional Stereo3D rendering can cause distortions in how the image is presented
to the player. RealD developed the 3D Game Developer Toolkit to correct these
distortions and handle some of the more complicated camera configurations.
Game developers are now free to use depth for creative gameplay and storytelling
innovations.

3D Game Developer Toolkit
AutoCAM—Our proprietary AutoCam algorithm automatically adjusts camera
separation to achieve the optimum depth in each scene. Scenes with a shallow depth
require greater camera separation to create a deep sense of volume, while scenes
with a large depth need less camera separation. AutoCAM analyzes each scene and
calculates the optimum camera configuration in real-time.

Depth Budget Allocation—In traditional stereoscopic rendering solutions, objects
in the foreground tend to have an exaggerated sense of volume while background
objects appear more flat. Our DBA technology allocates the available depth evenly
throughout each scene to create a more natural sense of volume. This greatly
increases the immersion of every scene.

Already integrated into Unreal Engine 3 and UDK, RealD’s 3D Game Developer
Toolkit can bring a premium 3D experience to any game on any platform.

1 Display Search, Display Technologies and Market Forecast Report, October 2012

http://reald.com/gaming

gd Game Developer (ISSN 1073-922X) is published monthly by UBM LLC, 303 Second Street, Suite 900 South, South Tower, San Francisco, CA 94107, (415)
947-6000. Please direct advertising and editorial inquiries to this address. Canadian Registered for GST as UBM LLC, GST No. R13288078, Customer No.
2116057, Agreement No. 40011901. SUBSCRIPTION RATES: Subscription rate for the U.S. is $49.95 for twelve issues. Countries outside the U.S. must be
prepaid in U.S. funds drawn on a U.S. bank or via credit card. Canada/Mexico: $59.95; all other countries: $69.95 (issues shipped via air delivery). Periodical
postage paid at San Francisco, CA and additional mailing offices. POSTMASTER: Send address changes to Game Developer, P.O. Box 1274, Skokie, IL 60076-
8274. CUSTOMER SERVICE: For subscription orders and changes of address, call toll-free in the U.S. (800) 250-2429 or fax (847) 647-5972. All other countries
call (1) (847) 647-5928 or fax (1) (847) 647-5972. Send payments to gd Game Developer, P.O. Box 1274, Skokie, IL 60076-8274. Call toll-free in the U.S./
Canada (800) 444-4881 or fax (785) 838-7566. All other countries call (1) (785) 841-1631 or fax (1) (785) 841-2624. Please remember to indicate gd Game
Developer on any correspondence. All content, copyright gd Game Developer magazine/UBM LLC, unless otherwise indicated. Don’t steal any of it. Or else.

0
6

3
ga

m
e

de
ve

lo
pe

r m
ag

az
in

e

COMPANY NAME PAGE #

CLINTON KEITH CONSULTING 060
EPIC GAMES C2
GLASS EGG DIGITAL MEDIA 059
INNOGAMES GMBH 061
KOELNMESSE GMBH 057
MASTERS OF DIGITAL MEDIA PROGRAM 056
RAD GAME TOOLS C4
REALD 062
SOCIETY FOR THE ADVANCEMENT
OF THE SCIENCE OF DIGITAL GAMES 017
STARDOCK ENTERTAINMENT 058

IN ASSOCIATION WITH UBM TECH PAGE #

GDC VAULT 003
GAMASUTRA.COM C2
GAME CAREER NETWORK 029
GAME DEVELOPER SUBSCRIPTIONS 061
GAME DEVELOPERS CONFERENCE 2013 057

ADVERTISER INDEX

For more information visit www.jointhegamenetwork.com

 063
A D I N D E X _ J a n u a r y 2 0 1 3

http://www.jointhegamenetwork.com
http://GDMAG.COM/SUBSCRIBE
http://GAMASUTRA.COM

0
6

4

064 ad
A R R E S T E D D E V E L O P M E N T _
M . WA S T E L A N D & M . U N D E R L A N D

ga
m

e
de

ve
lo

pe
r m

ag
az

in
e

IL
LU

ST
R

AT
IO

N
: J

U
A

N
 R

A
M

IR
EZ

There’s days when there’s a
murder, and then there’s days
when someone as big as A.A.A.
Development is found dead.
This was the second of those
types of days.

But who would want to kill
the man known as “Triple-A”?
Not everyone liked him, to be
sure, but who really stood to
benefi t if he got out of the way?

The fi rst suspect I spoke
with was Mobi LePhone. She
was as fl ippant as ever, but I
couldn’t pin her with a motive.
Then there was this new guy
Mobi had tipped me off to—Mr.
Waggle. What kind of name
is that, anyway? I decided I
needed to fi nd out.

Instead of a doorbell, Mr.
Waggle’s apartment had a sign
on it instructing me to put my
hands in the air beside my
head. I knocked instead. I heard
someone fumbling around
inside, and the door swung open
to reveal a portly man with a
mop of dark curls.

“Greetings! You must be the
famous detective, Stack Trace!”
he said. “You are hardcore?
Casual? You are, perhaps, what
they call midcore. But it is no
matter. I, Mr. Waggle, like all
kinds of people. Now, kindly
step inside.”

I tried to slip by him while
he closed the door, but he

jumped back.
“Please! Too close,” he said.

“I need at the least three feet of
space around me at all times.”

His brightly lit apartment
was decorated with funky wall
decals and oversize beanbag
chairs in bright, primary colors.

“Nice place,” I said,
and settled into one of the
beanbags.

“Actually, won’t you stand
up?” he said. “I cannot recognize
your shape if you are sitting.”

“Mr. Waggle—look, I just
wanted to ask you about your
relationship with Triple-A.”

“We had an excellent
relationship! So many synergies,
you see. I was—wait, where
did you go? You disappeared! I
can’t—oh, there you are. You’ve
been there the whole time?
That’s strange. Anyway, as I was
saying: Synergy!”

“Business is good for you
if it’s good for him? What’s the
future now that he’s out of the
picture?”

“Excuse me, but could you
preface everything you say to
me with ‘Mr. Waggle’? Speak
up, too.”

“Mr. Waggle, are you saying
you’ll be out of business now?”

“I guess I am saying that!
I’m, uh, sad. But surely you
must know this: If anyone
wanted Triple-A out of the
picture, it was the one they call
Bookface.”

Bookface. Maybe he wanted
to muscle in on Triple-A’s
business? Plausible enough.

“Mr. Waggle, thank you. I’ll
be on my way to see Bookface,
then.” I rocked myself out of the
beanbag chair—those things
are really hard to get out of once
you sit in them—when suddenly
I heard a faint but telltale
screeching metallic sound
emanating from the next room.

 There was only one person
I knew in all GameDev City who
listened to dubstep.

Just as the sick drop started,
I said, “Hey, Wags, be careful.
You never know who this griefer
will come at next.”

“Don’t worry, I think I’ll be…”
He paused, and I saw worry

crossing his face as I spun on
my heel.

“I didn’t start with ‘Mr.
Waggle,’ Mister Waggle…”

“You what? I, uh, I guess I
can sometimes understand—”

“That’s alright. Because
I should have been saying—
Mister Development!”

I surged forward and yanked
the toupee off his head. A
choked peep escaped from
his lips. There he was: Aaron
Alexander Akbar Development—
pale, sweaty, and a little worse
for wear, but as alive as a forum
on launch day.

 “You faked your own death

and then invented this bizarre
identity of Mr. Waggle. Why?”

“No use hiding it any longer,
Mr. Trace. I’d been gambling
again. I kept putting more
money into every bet, thinking
the returns just woul dn’t stop.
Well, eventually people lost
interest in me, and, well, I got
hard up on cash. To escape my
debts I fi gured I could reinvent
myself, become someone new:
a dapper man-about-town, a
real hit with the kids and the
ladies. I just wanted to appeal
to the masses, okay?”

He collapsed in the nearest
beanbag chair and sighed. “By
the way, Stack… How did you
know it was me?”

I was already on my way
out, but I turned and pulled
down my hat.

“It’s simple, Mr.
Development. I just followed all
the dialogue trees.”

Matthew Wasteland writes about
games and game development on
his blog, Magical Wasteland (www.
magicalwasteland.com). Email him
at mwasteland@gdmag.com. Magnus
Underland writes about games and
other topics at www.above49.ca.
Email him at magnus.underland@
gmail.com.

To view Part #1, visit: gdmag.com/blog

STACK TRACE
AND THE DEATH
OF A.A.A.
DEVELOPMENT,
PART 2
THE GRIPPING STORY OF OUR GAME
DEVELOPMENT DETECTIVE COMES TO
ITS SHOCKING CONCLUSION!

http://www.magicalwasteland.com
mailto:mwasteland@gdmag.com
http://www.above49.ca
mailto:magnus.underland@gmail.com
http://gdmag.com/blog
http://www.magicalwasteland.com
mailto:magnus.underland@gmail.com

http://GDCONF.COM

http://www.radgametools.com

	Contents
	Postmortem
	PAPO & YO

	Features
	FRONT LINE AWARDS
	BRING YOUR TOOLS TO BROWSERS
	REMIXING CLASSICS: INTERVIEW WITH MASAYA MATSUURA
	PLAYERS MAKE THE RULES

	Departments
	Editorial - Game Plan
	News - Heads Up Display
	Education - Educated Play
	Career - Good Job
	News - GDC News
	Review - Toolbox
	Programming - Inner Product
	Art - Pixel Pusher
	Design - Design of the Times
	Sound - Aural Fixation
	Business - The Business
	Editorial - Insert Credit
	Humor - Arrested Development

