
Iterating on a
 Dynamic Camera System

Phil Wilkins

Hello, good morning, and welcome.

My name is Phil, I’m a programmer at Sony Santa Monica, and I'm here to talk to you about the camera system we
use in the God of War series of games.

Three years ago I gave a version of this talk that covered the core of the system I developed for the first two
games. This is an iteration and an expansion on that talk, to include the new technology developed for three, and
to cover some of the detail I left out before.

• Selection

• Blending

• Dynamics

• Targeting

Overview

Blend Tree, Weights, Modes, Parameters

Environment, Combat, Scripting, Filtering

Animated, Dynamic, Combat

Hero, Creatures, Damping,
Weighting, Prioritisation

So the camera system, and my talk, break down into four broad areas. Selection deals with choosing the cameras
we’re interested in. Blending turns them into a single camera, ready to pass to the rendering system. Dynamics
describes how we calculate a cameras position and orientation. And finally, Targeting deals with what we’re
actually looking at.

• Selection

• Blending

• Dynamics

• Targeting

Overview

Blend Tree, Weights, Modes, Parameters

Animated, Dynamic, Combat

Hero, Creatures, Damping,
Weighting, Prioritisation

Environment, Combat, Scripting, Filtering

OK, so at any one time we have a large number of potential cameras to choose from. A typical level might have
around 50 cameras defined in it. Many of which are designed to be run simultaneously.

They’re submitted for selection by one of three systems. Zones placed in the environment, actions triggered by
the combat system, or entity scripting.

Selection : Environment

The navigable areas of the environment, are marked up with zones. These zones each reference one or more
cameras. When our hero enters a zone, the associate camera is selected.

Selection : Combat

Cameras can also be submitted by the combat system. When Kratos grabs this grunt, he goes into a branching
move sequence. Each of these moves can have an animated camera associated with it.

Selection : Scripting

Finally we have scripted sequences.

The player triggers something in the environment, and the scripting system tells the camera system to start and
stop a particular camera to highlight an event in game.

Selection : Filtering

• Ignore submitted camera based upon:

• Ignore list in active cameras

• Player state based filtering:

• On Ground, In Combat, Climbing, Flying, Swimming,
Jumping, Falling, On Rope, Wall Hang, Wall Press

• Prioritisation

Once we have a set of submitted cameras, we filter out the ones we don’t care about.
Each camera has a list of other cameras to either allow or ignore transition to.
We filter based on the players state. For example, a camera can be marked to only be valid if the player is falling.
This allows us to use different cameras for different transitions through the same area.
Finally from the remaining cameras, we ignore all those that have a priority level less than the highest one
submitted.

This gives us a list of cameras that should be active.

• Selection

• Blending

• Dynamics

• Targeting

Blend Tree, Weights, Modes, Parameters

Overview

Animated, Dynamic, Combat

Hero, Creatures, Damping,
Weighting, Prioritisation

Environment, Combat, Scripting, Filtering

Next we reconcile that with the blending system.

Blending : Blend Tree

The system maintains a blend tree. The tree is constructed and maintained based upon a cameras priority, how
it’s set to blend, and whether or not it was actually submitted this frame.

Old cameras are faded out, and new ones are inserted into the tree at the appropriate point.

*Each node has a weight, and mode that determine how it uses it’s inputs to calculate it’s output state.

Blending : Blend Tree

Weight
Mode

The system maintains a blend tree. The tree is constructed and maintained based upon a cameras priority, how
it’s set to blend, and whether or not it was actually submitted this frame.

Old cameras are faded out, and new ones are inserted into the tree at the appropriate point.

*Each node has a weight, and mode that determine how it uses it’s inputs to calculate it’s output state.

Blending : Weights
• Timer drives Hermite spline

Time

W
ei

gh
t

0 10.5
• Position within zone

• Driven by camera logic

Blend weights can be generated from timers. These timers aren't used raw, but instead, drive a Hermite spline to
add ease. Usually a timer runs forwards, as we generally replace old cameras by fading new cameras in over
them, but sometimes, like at the end of a combat camera sequence, we run one backwards to reveal the
underlying camera.
Weights can be driven from the heros position within a zone. These are calculated by the collision system. The
most useful weight is proportion across the zone, parallel to a vector. This allows us to crossfade between two
cameras as we move across the zone.
Or they can be calculated by the camera itself. We have an experimental camera that controls it's weight based
upon which direction it’s moving on it's rail.

Blending : Modes
• Crossfade

• Uses weight to blend second node
over first node

• Timers and self weighted nodes

• Average

• Sums and normalises weights of all
children to determine contribution

• Zone position weights

The mode determines how the children of that node are blended.

The crossfade mode blends the second node over the first node, as the weight increases from zero to one. This is
used for timers, and self weighted nodes.

The average mode blends across all the input nodes using their individual weights to produce an average. We use
this for zone position based blends.

Blending : Operations

• Decomposed into a sequence of binary operations between
cameras, with accumulators used to store intermediary values

• Cameras decomposed into aesthetically pleasing parameters that
are individually interpolated

• Camera orientation

• Target position in world space

• Target position in camera space

Once we have our blending tree, with all the weights determined, we reduce this to a list of blending operations
between pairs of cameras.
Each camera is converted into a set of parameters which can then be interpolated to produce an aesthetically
pleasing camera motion.
There are three major parameters, camera orientation, target position in world space, and target position in
camera space.

Lets see that as a diagram.

Target
Position

Offset

Look
vector

Target
vector

Orientation

Distance

•Target position (X,Y,Z)

•Offset in spherical
coordinates (Azimuth,
Elevation, Distance)

•Orientation as an Euler angle
(Yaw, Pitch, Roll)

Blending : Model Parameters

The camera is expressed relative to the target, so the camera will tween around it, and not through it.
The position of the target in camera space is stored as the offset of the target vector from the look vector, by two
angles, azimuth and elevation, or horizontal and vertical. With the distance from the camera to the target
completing the spherical coordinate form.
Finally the orientation of the camera is stored in euler form. Eulers tween nicely for cameras, as unlike
quaternions, they don't introduce any spurious roll, which looks ugly.

Blending : Gimbal Lock

Of course Eulers suffer from gimbal lock, and do nasty things when you look straight up and down. Now we try
and work around that by asking designers to avoid those shots, but like that's going to happen.

We solved this by keeping the camera ever so slightly tilted from vertical.

Blending : Gimbal Lock

But then they throw stuff like this at you, and yes, he's really going straight up here, we didn't just put the set on
it's side, although we probably should have done.

So we solve this, by adding an extra transform, which allows us to change the direction of the gimbal lock for the
orientation euler. We don't change this very often, most of the time it's an identity rotation, but it’s there for
these exceptional cases.

Now there was one exceptional case that we ended up cutting from the game...

Blending : Yaw Blending

So there’s another problem.
Azimuth, Yaw, and Roll all wrap around. So for each of these parameters we have two ways that any two cameras
can blend. The long way, and the short way.
It’s rarely an issue for Azimuth, since the target is almost invariably in front of the camera, and Roll is almost
always 0.
For Yaw though, it can be a problem. This system is not static, everything’s in motion. Which means that which
side is the shortest, can change, causing a massive pop as the camera flips from one side of the player to the
other.
*
Now this pathological case is fairly easy to spot, but sometimes it crops up in an intermediary step in the middle
of a long chain of blends.

Blending : Yaw Blending

So there’s another problem.
Azimuth, Yaw, and Roll all wrap around. So for each of these parameters we have two ways that any two cameras
can blend. The long way, and the short way.
It’s rarely an issue for Azimuth, since the target is almost invariably in front of the camera, and Roll is almost
always 0.
For Yaw though, it can be a problem. This system is not static, everything’s in motion. Which means that which
side is the shortest, can change, causing a massive pop as the camera flips from one side of the player to the
other.
*
Now this pathological case is fairly easy to spot, but sometimes it crops up in an intermediary step in the middle
of a long chain of blends.

Blending : Yaw Blending

So there’s another problem.
Azimuth, Yaw, and Roll all wrap around. So for each of these parameters we have two ways that any two cameras
can blend. The long way, and the short way.
It’s rarely an issue for Azimuth, since the target is almost invariably in front of the camera, and Roll is almost
always 0.
For Yaw though, it can be a problem. This system is not static, everything’s in motion. Which means that which
side is the shortest, can change, causing a massive pop as the camera flips from one side of the player to the
other.
*
Now this pathological case is fairly easy to spot, but sometimes it crops up in an intermediary step in the middle
of a long chain of blends.

Blending : Yaw Blending

For example, the designers intent with a set of cameras like this, is probably to control the camera in a path
below the player. But for the two cameras above the line, the shortest path is above the player.

Blending : Yaw Blending

The solution we use for this problem, is to express yaw for each input camera, as a 2d unit vector. * blending that
* for each blend in turn **** and converting it back into an angle when it comes time to generate the camera
transform for the renderer. This doesn't entirely solve the problem, but it does reduce it, and it gives us a metric
for fragile blends that we can use to warn the camera designer. * If the length of the vector gets too small,
warning text appears on screen.
*

Blending : Yaw Blending

The solution we use for this problem, is to express yaw for each input camera, as a 2d unit vector. * blending that
* for each blend in turn **** and converting it back into an angle when it comes time to generate the camera
transform for the renderer. This doesn't entirely solve the problem, but it does reduce it, and it gives us a metric
for fragile blends that we can use to warn the camera designer. * If the length of the vector gets too small,
warning text appears on screen.
*

Blending : Yaw Blending

The solution we use for this problem, is to express yaw for each input camera, as a 2d unit vector. * blending that
* for each blend in turn **** and converting it back into an angle when it comes time to generate the camera
transform for the renderer. This doesn't entirely solve the problem, but it does reduce it, and it gives us a metric
for fragile blends that we can use to warn the camera designer. * If the length of the vector gets too small,
warning text appears on screen.
*

Blending : Yaw Blending

The solution we use for this problem, is to express yaw for each input camera, as a 2d unit vector. * blending that
* for each blend in turn **** and converting it back into an angle when it comes time to generate the camera
transform for the renderer. This doesn't entirely solve the problem, but it does reduce it, and it gives us a metric
for fragile blends that we can use to warn the camera designer. * If the length of the vector gets too small,
warning text appears on screen.
*

Blending : Yaw Blending

The solution we use for this problem, is to express yaw for each input camera, as a 2d unit vector. * blending that
* for each blend in turn **** and converting it back into an angle when it comes time to generate the camera
transform for the renderer. This doesn't entirely solve the problem, but it does reduce it, and it gives us a metric
for fragile blends that we can use to warn the camera designer. * If the length of the vector gets too small,
warning text appears on screen.
*

Blending : Yaw Blending

The solution we use for this problem, is to express yaw for each input camera, as a 2d unit vector. * blending that
* for each blend in turn **** and converting it back into an angle when it comes time to generate the camera
transform for the renderer. This doesn't entirely solve the problem, but it does reduce it, and it gives us a metric
for fragile blends that we can use to warn the camera designer. * If the length of the vector gets too small,
warning text appears on screen.
*

Blending : Yaw Blending

The solution we use for this problem, is to express yaw for each input camera, as a 2d unit vector. * blending that
* for each blend in turn **** and converting it back into an angle when it comes time to generate the camera
transform for the renderer. This doesn't entirely solve the problem, but it does reduce it, and it gives us a metric
for fragile blends that we can use to warn the camera designer. * If the length of the vector gets too small,
warning text appears on screen.
*

Blending : Yaw Blending

The solution we use for this problem, is to express yaw for each input camera, as a 2d unit vector. * blending that
* for each blend in turn **** and converting it back into an angle when it comes time to generate the camera
transform for the renderer. This doesn't entirely solve the problem, but it does reduce it, and it gives us a metric
for fragile blends that we can use to warn the camera designer. * If the length of the vector gets too small,
warning text appears on screen.
*

Blending : Yaw Blending

The solution we use for this problem, is to express yaw for each input camera, as a 2d unit vector. * blending that
* for each blend in turn **** and converting it back into an angle when it comes time to generate the camera
transform for the renderer. This doesn't entirely solve the problem, but it does reduce it, and it gives us a metric
for fragile blends that we can use to warn the camera designer. * If the length of the vector gets too small,
warning text appears on screen.
*

Blending : Yaw Blending

The solution we use for this problem, is to express yaw for each input camera, as a 2d unit vector. * blending that
* for each blend in turn **** and converting it back into an angle when it comes time to generate the camera
transform for the renderer. This doesn't entirely solve the problem, but it does reduce it, and it gives us a metric
for fragile blends that we can use to warn the camera designer. * If the length of the vector gets too small,
warning text appears on screen.
*

Blending : Yaw Blending

The solution we use for this problem, is to express yaw for each input camera, as a 2d unit vector. * blending that
* for each blend in turn **** and converting it back into an angle when it comes time to generate the camera
transform for the renderer. This doesn't entirely solve the problem, but it does reduce it, and it gives us a metric
for fragile blends that we can use to warn the camera designer. * If the length of the vector gets too small,
warning text appears on screen.
*

Blending : Yaw Blending

The solution we use for this problem, is to express yaw for each input camera, as a 2d unit vector. * blending that
* for each blend in turn **** and converting it back into an angle when it comes time to generate the camera
transform for the renderer. This doesn't entirely solve the problem, but it does reduce it, and it gives us a metric
for fragile blends that we can use to warn the camera designer. * If the length of the vector gets too small,
warning text appears on screen.
*

Blending : Yaw Blending

The solution we use for this problem, is to express yaw for each input camera, as a 2d unit vector. * blending that
* for each blend in turn **** and converting it back into an angle when it comes time to generate the camera
transform for the renderer. This doesn't entirely solve the problem, but it does reduce it, and it gives us a metric
for fragile blends that we can use to warn the camera designer. * If the length of the vector gets too small,
warning text appears on screen.
*

Blending : Yaw Blending

WARNING!
Fragile Yaw Blend!

The solution we use for this problem, is to express yaw for each input camera, as a 2d unit vector. * blending that
* for each blend in turn **** and converting it back into an angle when it comes time to generate the camera
transform for the renderer. This doesn't entirely solve the problem, but it does reduce it, and it gives us a metric
for fragile blends that we can use to warn the camera designer. * If the length of the vector gets too small,
warning text appears on screen.
*

Blending : Model Parameters

• Target world position as a vector

• Offset of target in camera space, in spherical coords

• Camera pitch and roll as angles

• Camera yaw as 2d vector

• Gimbal lock orientation as a quarternion

• Angle of View

So here’s our final list of blending parameters
OK, so that's enough to create camera position and orientation, which just leaves angle of view.

• Selection

• Blending

• Dynamics

• Targeting

Blend Tree, Weights, Modes, Parameters

Overview

Animated, Dynamic, Combat

Hero, Creatures, Damping,
Weighting, Prioritisation

Environment, Combat, Scripting, Filtering

So,how do we actually generate a camera in the first place.

Dynamics

• Animated Camera

• Dynamic Camera

• Combat Camera

Well there are three basic cameras, that approximately match the three different submission methods.
The Animated camera is used mostly for cinematic sequences, and generally triggered by the scripting system.
The Dynamic camera deals with environmental situations, and is generally zoned.
And the Combat camera when we want to get a close up shot of a fight sequence, is submitted by the combat
system.

OK let’s start off with a simple one.

• Converts hand animated camera directly into blending
parameters

• Cinematic sequences of all lengths

• Optional static target for blending purposes, uses aim
point from Maya

Animated Camera

The animated camera, takes a camera animated by, err, an animator, and maps it directly to the blending
parameters. We typically use this for cinematic sequences.

To control blending you can set it to use the aim point from Maya as it’s target point

Animated Camera : Drive Rail

• Drive rail is a NURBS curve

• Calculate parameter value for nearest point on curve to hero

• Convert to animation time

• Apply new time to animated camera

• Many attributes of dynamic camera can also be animated

• Change dynamic constraints based on hero position

It became more powerfull in GoW3 when we added the ability to drive animation based on the nearest point on a
NURBS curve we call the Drive Rail.

This is pretty simple, basically we map the length of the animation to the length of the rail. Calculate the nearest
point on the rail to the hero each frame, and set the animation time based on that mapping.

The bonus is that, you can animate most of the interesting parameters of the Dynamic camera. So you can use
this as another way of varying dynamics, based on the players position in the world.

• Animated Camera

• Dynamic Camera

• Combat Camera

Dynamics

So lets talk about the Dynamic camera, and how those parameters work.

Dynamic Camera : Model

Target
Position

Offset

Look
vector

Target
vector

Orientation

Distance

•Target position (X,Y,Z)

•Offset in spherical
coordinates (Azimuth,
Elevation, Distance)

•Orientation as an Euler angle
(Yaw, Pitch, Roll)

The dynamic camera model is very similar to model we use for blending. The world position of the target. The
targets offset from the camera, in spherical coordinates, and the orientation of the camera as an Euler.

Orientation
Offset

Distance Target

Dolly

Boom

Target
Plane

Dynamic Camera : Model

•Dolly position

•Boom orientation and
length

•Distance from target
plane

LengthRail

There’s a couple of extra bits we care about. There’s the Dolly, which is either a fixed point in space, or a point
on a NURBS curve called the Rail.

And there’s the boom. This a vector coincident with the look vector, starting at the Dolly, and ending at the
target plane.

We use the boom to calculate and constrain the orientation and distance properties of the camera.

We also convert the offset distance into the distance from the camera to the target plane, as that stops
constraining the offset from changing the size of the target on screen.

Dynamic Camera : Constraints

Constraint Model Parameter

Framing Offset Azimuth and Elevation

Dolly Length and Orientation of Boom

Distance Distance from Camera to Target plane

Orientation Tilt and Yaw of Camera

So here's the set of constraints, in the order they're applied.

First we set the framing, by constraining the offset azimuth and elevation, the horizontal and vertical components
of the target in camera space.
Then, we update the position of the dolly to constrain the length and orientation of the boom.
Then we constrain the distance of the camera from the target plane.
And finally we constrain the orientation of the camera.

-1 0

0

+1

-1
+1

Constraints : Framing

Logical
Screen

Coordinates

Safe Zone

The framing constraint is specified as a range of logical screen coordinates from -1 to +1, that defines a
rectangle on screen, known as the safe zone.

The idea being that if Kratos moves out of the safe zone, we’ll move the camera to put him back in it.

-180 0

0

+90

-90
+180

Constraints : Framing

Spherical Coordinates
So the first thing we do is to use the field of view and aspect ratio to convert the safe zone into a pair of spherical
angle ranges. We make this calculation each frame, because these constraint values may be animated. Obviously
the spherical projection is distorted towards the top and bottom, but since horizontal fov never opens up that
much, the error is small in our operating range, so we can ignore it.

Let’s clean that up a little...

-180 0

0

+90

-90
+180

Constraints : Framing

And zoom in so we can see what we’re doing

-45 0 +45

0

+30

-30

Constraints : Framing

So first we update the offset angles for the updated position of the target.
*
Then we clamp them to their respective ranges. Here it’s already within the horizontal constraint, but needs to be
moved down to match the top of the vertical constraint.
*
Because we don’t change orientation or distance at this stage, this has the effect of tracking the camera vertically
with respect to the player.

-45 0 +45

0

+30

-30

Constraints : Framing

So first we update the offset angles for the updated position of the target.
*
Then we clamp them to their respective ranges. Here it’s already within the horizontal constraint, but needs to be
moved down to match the top of the vertical constraint.
*
Because we don’t change orientation or distance at this stage, this has the effect of tracking the camera vertically
with respect to the player.

-45 0 +45

0

+30

-30

Constraints : Framing

So first we update the offset angles for the updated position of the target.
*
Then we clamp them to their respective ranges. Here it’s already within the horizontal constraint, but needs to be
moved down to match the top of the vertical constraint.
*
Because we don’t change orientation or distance at this stage, this has the effect of tracking the camera vertically
with respect to the player.

Constraints : Dolly & Boom

Dolly

Boom

Now before we constrain distance and orientation, we have to calculate the boom, which means determining the
position of the dolly. If there’s no rail, then we just use a fixed point, in space.
*If there is a rail though, then we need to move the move the dolly along it to satisfy the constraints.
*There’s a distance constraint
*and there are angle constraints, symmetrical either side of a fixed vector through the dolly, or relative to the
tangent on the rail at the dolly.
* These are used to generate weights, for a minimisation function that moves the dolly to best satisfy the
constraints.

Constraints : Dolly & Boom

Rail

Dolly

Boom

Now before we constrain distance and orientation, we have to calculate the boom, which means determining the
position of the dolly. If there’s no rail, then we just use a fixed point, in space.
*If there is a rail though, then we need to move the move the dolly along it to satisfy the constraints.
*There’s a distance constraint
*and there are angle constraints, symmetrical either side of a fixed vector through the dolly, or relative to the
tangent on the rail at the dolly.
* These are used to generate weights, for a minimisation function that moves the dolly to best satisfy the
constraints.

Min Distance

Max Distance

Constraints : Dolly & Boom

Rail

Dolly

Boom

Now before we constrain distance and orientation, we have to calculate the boom, which means determining the
position of the dolly. If there’s no rail, then we just use a fixed point, in space.
*If there is a rail though, then we need to move the move the dolly along it to satisfy the constraints.
*There’s a distance constraint
*and there are angle constraints, symmetrical either side of a fixed vector through the dolly, or relative to the
tangent on the rail at the dolly.
* These are used to generate weights, for a minimisation function that moves the dolly to best satisfy the
constraints.

Min Distance

Max Distance

Constraints : Dolly & Boom

Rail

Dolly

Boom

Angle Constraint

Now before we constrain distance and orientation, we have to calculate the boom, which means determining the
position of the dolly. If there’s no rail, then we just use a fixed point, in space.
*If there is a rail though, then we need to move the move the dolly along it to satisfy the constraints.
*There’s a distance constraint
*and there are angle constraints, symmetrical either side of a fixed vector through the dolly, or relative to the
tangent on the rail at the dolly.
* These are used to generate weights, for a minimisation function that moves the dolly to best satisfy the
constraints.

Min Distance

Max Distance

Constraints : Dolly & Boom

Rail

Dolly

Boom

Angle Constraint

Now before we constrain distance and orientation, we have to calculate the boom, which means determining the
position of the dolly. If there’s no rail, then we just use a fixed point, in space.
*If there is a rail though, then we need to move the move the dolly along it to satisfy the constraints.
*There’s a distance constraint
*and there are angle constraints, symmetrical either side of a fixed vector through the dolly, or relative to the
tangent on the rail at the dolly.
* These are used to generate weights, for a minimisation function that moves the dolly to best satisfy the
constraints.

• Position expressed as single parameter to weighting
function

• Weighting function calculates weight proportional to
target distance outside of constraints at given position

• Minimisation function performs local search of
parameter space to determine nearest minima

• Output damped to remove precision artifacts

Constraints : Minimisation

So the minimisation function basically takes a weighting function, and an initial parameter value.
The weighting function converts the parameter into a dolly position,
 works out how far outside the constraints the target would be, and returns that as a weight.
The minimisation function then searches the parameter space near the initial parameter in order to find a local
minima.
During early development of the minimisation function, it suffered from small errors that made motion a little
jerky, so in order to smooth it out, we added some simple damping. Now although the function is pretty smooth
itself these days, the designers liked the effect of the damping, and it remains in the system.

Constraints : Distance

• Distance from Boom Ratio

• Constrain to Dolly

• Constrain to Target

• Optionally set to fixed
distance

Now we have a boom, we use it calculate the distance attribute.
*For this we use the Boom Ratio parameter, which defines a logical position on the boom, from 1..0 with 1 being
the dolly, and 0 being the target plane.
*Next we apply a min / max constraint to the distance from the dolly.
*And then the same again to the target. We do the target distance constraint last, to ensure that the camera
never goes crashing through the hero, and clips his mesh.
Alternatively we can set the distance to a fixed value.

Constraints : Distance

• Distance from Boom Ratio

• Constrain to Dolly

• Constrain to Target

• Optionally set to fixed
distance

01 0.5
Boom Ratio

Now we have a boom, we use it calculate the distance attribute.
*For this we use the Boom Ratio parameter, which defines a logical position on the boom, from 1..0 with 1 being
the dolly, and 0 being the target plane.
*Next we apply a min / max constraint to the distance from the dolly.
*And then the same again to the target. We do the target distance constraint last, to ensure that the camera
never goes crashing through the hero, and clips his mesh.
Alternatively we can set the distance to a fixed value.

Constraints : Distance

• Distance from Boom Ratio

• Constrain to Dolly

• Constrain to Target

• Optionally set to fixed
distance

Dolly Constraint

01 0.5
Boom Ratio

Now we have a boom, we use it calculate the distance attribute.
*For this we use the Boom Ratio parameter, which defines a logical position on the boom, from 1..0 with 1 being
the dolly, and 0 being the target plane.
*Next we apply a min / max constraint to the distance from the dolly.
*And then the same again to the target. We do the target distance constraint last, to ensure that the camera
never goes crashing through the hero, and clips his mesh.
Alternatively we can set the distance to a fixed value.

Constraints : Distance

• Distance from Boom Ratio

• Constrain to Dolly

• Constrain to Target

• Optionally set to fixed
distance

Dolly Constraint Target Constraint

01 0.5
Boom Ratio

Now we have a boom, we use it calculate the distance attribute.
*For this we use the Boom Ratio parameter, which defines a logical position on the boom, from 1..0 with 1 being
the dolly, and 0 being the target plane.
*Next we apply a min / max constraint to the distance from the dolly.
*And then the same again to the target. We do the target distance constraint last, to ensure that the camera
never goes crashing through the hero, and clips his mesh.
Alternatively we can set the distance to a fixed value.

Constraints : Orientation

• Yaw and Pitch seperated

• Set Orientation from Boom

• Constrain Orientation to
valid range

• Rotation applied around
camera position

• Optionally set to fixed angle

Finally we calculate and constrain orientation. This is done for the pitch and yaw angles separately. Roll is not
generated directly, and is set to 0 at this stage.
First we set the orientation of the camera, from the orientation of the boom.
* The we check this angle against the same angle constraints we used to constrain the boom.
* If the orientation is outside the constraint, then we rotate the camera to fit them. This happens at the camera,
so we have to recalculate distance and offset to keep the camera from moving.
Alternatively, like distance, we can set the orientation to a fixed angle.

Constraints : Orientation

Angle Constraint• Yaw and Pitch seperated

• Set Orientation from Boom

• Constrain Orientation to
valid range

• Rotation applied around
camera position

• Optionally set to fixed angle

Finally we calculate and constrain orientation. This is done for the pitch and yaw angles separately. Roll is not
generated directly, and is set to 0 at this stage.
First we set the orientation of the camera, from the orientation of the boom.
* The we check this angle against the same angle constraints we used to constrain the boom.
* If the orientation is outside the constraint, then we rotate the camera to fit them. This happens at the camera,
so we have to recalculate distance and offset to keep the camera from moving.
Alternatively, like distance, we can set the orientation to a fixed angle.

Constraints : Orientation

Angle Constraint• Yaw and Pitch seperated

• Set Orientation from Boom

• Constrain Orientation to
valid range

• Rotation applied around
camera position

• Optionally set to fixed angle

Finally we calculate and constrain orientation. This is done for the pitch and yaw angles separately. Roll is not
generated directly, and is set to 0 at this stage.
First we set the orientation of the camera, from the orientation of the boom.
* The we check this angle against the same angle constraints we used to constrain the boom.
* If the orientation is outside the constraint, then we rotate the camera to fit them. This happens at the camera,
so we have to recalculate distance and offset to keep the camera from moving.
Alternatively, like distance, we can set the orientation to a fixed angle.

Constraints : Conflict

• Applying one constraint inevitably pushes the system
out of another constraint

• Try to minimise constraint conflict

• Best case, system settles

• Worst case, system explodes

• In case of oscillation, relax constraints

Almost inevitably, whenever you apply one constraint, you push the model out of compliance with another
constraint. Now we can try to minimise that effect, by making the constraints affect independent parameters of
the model, but sometimes that’s just not possible. As we saw with the rotation constraint, sometimes you affect
the whole model. Usually, these conflicts settle themselves quickly and quietly, but sometimes they oscillate, and
in the worst case, they explode in a nightmare scenario of positive feedback hell.

Fortunately this is pretty easily fixed by opening up some of the constraints. In my experience it’s usually the
orientation constraints. Opening them up from 0 to 5 degrees can make the difference between broken mess,
and a perfectly smooth camera.

• Maya Camera Position - X,Y,Z

• Maya Camera Orientation - Pitch, Yaw

• Safe Zone - Top, Bottom, Left, Right

• Boom Ratio

• Distance from Dolly - Min, Max

• Distance from Target - Min, Max

• Angle Constraints - Pitch, Yaw

• Angle Constraint Flags - Rail Relative, Move Dolly

Dynamic Camera : Constraints

So here’s a list of all the constraints the designers have control over.

Note that we use the dolly distance and angle constraints for the boom, and for the camera itself. This keeps the
constraint parameters simple.

As I mentioned previously, all these parameters can be animated and the Maya camera can be attached to an
animated objected, such as a Titan.

The two exceptions would be the two flags at the bottom there. Rail Relative determines whether or not the angle
constraints are expressed relative to the tangent at the dolly. And Move Dolly controls whether the angle
constraints are applied to the Dolly.

Dynamic Camera : Model

Target
Position

Offset
Orientation

Distance

So having generated and constrained Offset, Orientation, and Distance, we now have our updated camera position
and orientation. Finally we convert Distance back into blending format, and we’re ready to send it to the blender.

Dynamic Camera : Model

Target
Position

Offset
Orientation

Distance

So having generated and constrained Offset, Orientation, and Distance, we now have our updated camera position
and orientation. Finally we convert Distance back into blending format, and we’re ready to send it to the blender.

Dynamics

• Animated Camera

• Dynamic Camera

• Combat Camera

Then there's the combat camera.

Combat Camera

So here’s our hero doing the thing he loves most, getting a little hands on time with a dear friend. When this
happens, we like to take more direct control of the camera, to get the best shot of the action.

Now these events can happen anywhere in the environment, so obviously we can’t author these cameras in the
world.

Synch Joint

Combat Camera : Rig

Instead we animate them relative to the characters involved. So there’s effectively three characters in this scene.
Our hero, his friend, and the camera rig. All three are synched by moving them such that a joint in each, called
the synch joint, matches position and orientation. The animations they’re playing are also synchronised, and all
run off of the same clock.

Combat Camera : Rig

Synch Joint

Target

Camera

The combat rig is a creature with three joints. There’s the synch joint at the root, and attached to that are a
Camera and a Target, each on their own joints.

So why do we have a Camera, and a Target?

IMAGHE!

Combat Camera : Lock

So here’s the thing, if we know we’re in an open arena, with plenty of clearance, and we’re confident that the
camera animation played from any position isn’t going to go flying through the environment, then we’re OK. And
sometimes we are.

Combat Camera : Lock

Except of course, in most environments we’re not, and there’s a very good chance that the camera is going to
end up in the middle of a column, or behind a wall, and that’s not good. We made a decision not to do any
collision on the camera. It’s very difficult to do camera collision well, you get all sorts of jolts to the camera.

Combat Camera : Lock

Target
• Position taken from underlying environmental camera

• Rotate camera to point at target

• Angle of view calculated to get same framing as rig
camera would have had

So what we do, when we’re not confident of the environment is use the position of the environmental camera
we’re blending the combat camera over. That camera will have been designed not to intersect the environment,
so we know the position is safe.
We then take the position of the rig target, and rotate the camera to face it.
Then we set fov such the the target appears at the same size it would have done if we were using the camera on
the rig directly.

Rig Camera Zoned
Camera

Combat Camera : Lock

You can visualise this by imagining a sphere that encompasses the area of interest. It’s defined by the target
point, the camera, and the fov.
*
We then make the zoned camera frame that sphere by rotating it to point at the center,
*
and bringing it’s fov in to fit the sphere

Rig Camera Zoned
Camera

Combat Camera : Lock

You can visualise this by imagining a sphere that encompasses the area of interest. It’s defined by the target
point, the camera, and the fov.
*
We then make the zoned camera frame that sphere by rotating it to point at the center,
*
and bringing it’s fov in to fit the sphere

Rig Camera Zoned
Camera

Combat Camera : Lock

You can visualise this by imagining a sphere that encompasses the area of interest. It’s defined by the target
point, the camera, and the fov.
*
We then make the zoned camera frame that sphere by rotating it to point at the center,
*
and bringing it’s fov in to fit the sphere

Rig Camera Zoned
Camera

Combat Camera : Lock

You can visualise this by imagining a sphere that encompasses the area of interest. It’s defined by the target
point, the camera, and the fov.
*
We then make the zoned camera frame that sphere by rotating it to point at the center,
*
and bringing it’s fov in to fit the sphere

Combat Camera : Rotation

• Rotate creature (and thus rig) such that environmental
camera has same yaw as rig camera.

• Animate multiple cameras from different angles.

• Pick closest to minimise initial rotation.

On top of that, we get some of the positional information back, by rotating the target creatures around the up
axis, to match the camera animation.
We tween this initial rotation in over time, which can look odd, especially for large angles.
So in order to minimise this initial rotation, we author cameras from multiple angles, and pick the closest one.
Generally they author four, at rough compass points. Sometimes merging them into one, under animation
control.

Combat Camera : Rotation

So here’s an example. When we tackle the minotaur head on, you can’t see any rotation.

Combat Camera : Rotation

But when we tackle him from the side, you can see the rotation between the head slam, and the minigame where
you’re twisting the horns.

Combat Camera : Rotation

OK, one more time, from head on.

Combat Camera : Rotation

And from the side

Now you might be able to spot some foot sliding in there, but the animators have hidden it by having Kratos take
some steps at that point in the move.

Combat Camera

Target
• Rig is a creature synched to creature the triggered it

• Animation synched to target creature

• Made up of synch joint, camera, and target

• Fast version has no rig, and uses hero target

• Optionally take position from underlying camera

• Optionally rotate creatures from camera yaw animation

So that’s the combat camera. There’s also a minimal version that doesn’t use a rig, but instead uses the hero’s
target, and a width defined in the triggering action.

Again, both the creature rotation and position override are optional features. Often a boss is constrained to a
specific area, so if the designers are confident that there will always be enough space around a character, they
can turn position override off, and move the camera however they want. An unexpected side effect of this, was
that many of our cutscenes in 3 were actually authored as combat cameras synched to one of the protagonists.

• Selection

• Blending

• Dynamics

• Targeting

Overview

Hero, Creatures, Damping,
Weighting, Prioritisation

Blend Tree, Weights, Modes, Parameters

Animated, Dynamic, Combat

Environment, Combat, Scripting, Filtering

So that's selection, blending, and dynamics. Now lets move on to Targeting, or how we decide what we’re actually
looking at.

Targeting : Hero

• Logical position on ground, between feet

• Collision capsule extends 2.25m up to head

• Target is a single point 1.5m above base

• No damping on hero target specifically

• All damping comes from player logic

So here’s our hero, the players avatar, puppet of the Gods, and all round moody bloke.

Targeting : Hero

• Logical position on ground, between feet

• Collision capsule extends 2.25m up to head

• Target is a single point 1.5m above base

• No damping on hero target specifically

• All damping comes from player logic

As far as the game is concerned, he starts at a logical position between his feet, and extends 2.25m straight up
to the top of his head.

There’s a collision capsule that stretches between these two points.

Targeting : Hero

• Logical position on ground, between feet

• Collision capsule extends 2.25m up to head

• Target is a single point 1.5m above base

• No damping on hero target specifically

• All damping comes from player logic

And about 1.5m up that capsule, at gut height, there’s the camera target.

There’s no explicit damping on the hero target. All the damping comes from the player logic.

This ensures that the camera is always tight on the hero, and he doesn’t lag or lead the desired framing too
much.

Targeting : Hero

• Jump Correction

• Optional, per camera

• Ignores the effect of jumping

• Lands higher that he started, tween up

• Falls past corrected height, resume tracking

Now Kratos jumps around a lot, and sometime we don’t want that to drag the camera up and down. So there’s an
optional system called Jump Correction that can be enabled on a per-camera basis that allows us to ignore the
effect of jumping.

If he lands on a higher surface than he started on, we tween the target up to meet him.

And if he falls below the starting height, we resume tracking his vertical position.

Targeting : Hero

So lets look at that in action.

Targeting : Creatures

And that’s pretty much all we did for targeting for the first God of War. So for the sequel, we naturally had to
improve on this. And the obvious thing to do was to support more than one target. Ideally to have a target on
everything of interest, and somehow take them all into account when constructing a camera.

* Now this next sections going to have a few videos set in the test level. So I should explain the debug info you
can see here. The big red sphere on the left over Kratos is the Hero target, the smaller one on the right over the
Grunt, is a creature target. The diamond just to the left of centre is the Boom Target, this is the point we use for
calculating the Boom for the dynamic camera. And the big white rectangle is the safe zone we use for the framing
constraint.

Targeting : Creatures

Safe Zone

Boom
Target

Hero
Target

Creature
Target

And that’s pretty much all we did for targeting for the first God of War. So for the sequel, we naturally had to
improve on this. And the obvious thing to do was to support more than one target. Ideally to have a target on
everything of interest, and somehow take them all into account when constructing a camera.

* Now this next sections going to have a few videos set in the test level. So I should explain the debug info you
can see here. The big red sphere on the left over Kratos is the Hero target, the smaller one on the right over the
Grunt, is a creature target. The diamond just to the left of centre is the Boom Target, this is the point we use for
calculating the Boom for the dynamic camera. And the big white rectangle is the safe zone we use for the framing
constraint.

Targeting : Creatures

• Is a sphere, not just a point

• Weight and priority define influence

• Can be attached to a joint

• Needs to be damped

So how is a creature target different from the Hero target? Well it’s a sphere, rather than just point, and it has a
weight and priority that we’ll use to define it’s influence.
It can also be attached to a joint, which means we’ll need to damp it. Recall that for the Hero target we have no
damping, as we rely on the player logic to move the capsule smoothly. Animation joints make no such promises,
and make movements entirely at the animators whim. Creating enormous potential for undesired motion to be
added to any camera that is using that target.
So we need to filter out small movement, so that an idling creature doesn’t set the camera oscillating. But we also
need to make sure we track large movements, and that we transition between the two states smoothly.

Target joint

Targeting : Damping

We solve this by wrapping the joint in two spheres.
* There’s free movement within the inner sphere.
* Progressively damped movement between the spheres, that eventually returns the joint to the inner sphere.
* And undamped movement at the outer sphere. If the joint has reached, or moved outside of the outer sphere,
the target moves instantly to keep the joint inside. This guarantees the target never become detached from the
creature.

Free movement in
inner sphere

Targeting : Damping

We solve this by wrapping the joint in two spheres.
* There’s free movement within the inner sphere.
* Progressively damped movement between the spheres, that eventually returns the joint to the inner sphere.
* And undamped movement at the outer sphere. If the joint has reached, or moved outside of the outer sphere,
the target moves instantly to keep the joint inside. This guarantees the target never become detached from the
creature.

Progressively
damped movement
between spheres

Targeting : Damping

We solve this by wrapping the joint in two spheres.
* There’s free movement within the inner sphere.
* Progressively damped movement between the spheres, that eventually returns the joint to the inner sphere.
* And undamped movement at the outer sphere. If the joint has reached, or moved outside of the outer sphere,
the target moves instantly to keep the joint inside. This guarantees the target never become detached from the
creature.

Targeting : Damping

Undamped
movement

at outer sphere

We solve this by wrapping the joint in two spheres.
* There’s free movement within the inner sphere.
* Progressively damped movement between the spheres, that eventually returns the joint to the inner sphere.
* And undamped movement at the outer sphere. If the joint has reached, or moved outside of the outer sphere,
the target moves instantly to keep the joint inside. This guarantees the target never become detached from the
creature.

Targeting : Weighted Average

So back to Kratos, and he’s got quite the crowd with him now. Lets look at that from the camera systems
perspective

Targeting : Weighted Average

So now we put targets on every creature in the fight, the easiest thing to do is just average them to produce a
boom target we can feed into the dynamic camera.
This helps, and since Kratos is normally somewhere near the middle of the fight, it doesn’t usually move him off
screen.

Targeting : Weighted Average

But there’s no guarantee that it doesn’t. If he’s running away from a slow moving creature, then we could quite
easily end up with both of them off screen. So what we do, is add a weight to each target, and generate the boom
target from a weighted average.

Targeting : Weighted Average

• Sum of all weighted positions divided by sum of all weights.

• Target weight is product of base, distance, and activation

• Base weight - importance of target

• Distance weight - fade out over distance from Hero

• Activation weight - fade in and out and birth and death

So the boom target is now the sum of all the target positions multiplied by their weights, and divided by the sum
of all weights.
Each targets weight is the product of three contributing weights, each from 0..1
The Base weight, which is how important the target is.
The Distance weight, which fades out between a minimum and maximum distance from the Hero.
And the Activation weight, which we use to smoothly add and remove targets. Usually when a creature is
spawned or killed.

Targeting : Weighted Average

So lets see that in action. Now for a fight with lot of creatures, this works pretty well.

Targeting : Weighted Average

But by the time we’re down to one creature, well, it’s not really getting in as close as it could.

• Problems:

• Ignores size of fight

• Doesn’t get camera in as close as it could go

• Doesn’t help when threats spread out

• Really want a solution that takes each target into consideration

Targeting : Weighted Average

The problem is that this technique makes no distinction between a fight that’s close in, or has spread out.

This makes it almost impossible for the camera designers to control the framing of the fight.

The flaw is that in the averaging process, it loses all the extra targeting information. We really want a solution
that takes each target into account, but keeps the most important target in shot at all times.

Targeting : Prioritised Framing

•Promise that highest priority target remains in frame

•Frame lower priority targets as best possible

•New framing and distance constraints to handle multiple targets

•Iterate over priority levels, starting at lowest

•Constraining highest priority last, ensures it is in frame

•Move camera along Boom to best frame targets

So, for the second pass at dealing with multiple targets, the goal was to promise that the highest priority target
would remain in frame. And to make the best effort to frame the lower priority targets.
The new algorithm expands upon the framing and distance constraints. Instead of clamping a single point, it
tracks the camera to best frame the extents of multiple target spheres.
It does this for each active priority level, starting from the lowest and ending at the highest. That way we
guarantee that the highest priority target is in frame.
It then pulls back or pushes forward to best frame all targets.

Targeting : Prioritised Framing

3

2

1

3

3

3

1.Centre on Hero

2.Calculate extents of
lowest priority level

3.Minimally track to
frame extents

4.Repeat 2 & 3 for next
highest priority level

5.Apply delta to Azimuth
and Elevation

So here’s the algorithm. This is all done in the spherical space we used for the original safe zone framing
constraint.
*First we centre the frame on the hero, this is optional, but it lets you have the large safe zone without Kratos
rattling around in it when he’s on his own.
*Then we calculate the extents of the lowest priority level, *and move the frame the smallest amount required to
encompass as much of it as we can.
*Repeat at the next highest priority level until done.

When we’re done, we have the new frame. Well, what we actually have is the amount the frame moved, and we
apply that delta to the the azumith and elevation parameters that determine the position of the boom target on
screen.

Targeting : Prioritised Framing

3

2

1

3

3

3

1.Centre on Hero

2.Calculate extents of
lowest priority level

3.Minimally track to
frame extents

4.Repeat 2 & 3 for next
highest priority level

5.Apply delta to Azimuth
and Elevation

So here’s the algorithm. This is all done in the spherical space we used for the original safe zone framing
constraint.
*First we centre the frame on the hero, this is optional, but it lets you have the large safe zone without Kratos
rattling around in it when he’s on his own.
*Then we calculate the extents of the lowest priority level, *and move the frame the smallest amount required to
encompass as much of it as we can.
*Repeat at the next highest priority level until done.

When we’re done, we have the new frame. Well, what we actually have is the amount the frame moved, and we
apply that delta to the the azumith and elevation parameters that determine the position of the boom target on
screen.

Targeting : Prioritised Framing

3

2

1

3

3

3

1.Centre on Hero

2.Calculate extents of
lowest priority level

3.Minimally track to
frame extents

4.Repeat 2 & 3 for next
highest priority level

5.Apply delta to Azimuth
and Elevation

So here’s the algorithm. This is all done in the spherical space we used for the original safe zone framing
constraint.
*First we centre the frame on the hero, this is optional, but it lets you have the large safe zone without Kratos
rattling around in it when he’s on his own.
*Then we calculate the extents of the lowest priority level, *and move the frame the smallest amount required to
encompass as much of it as we can.
*Repeat at the next highest priority level until done.

When we’re done, we have the new frame. Well, what we actually have is the amount the frame moved, and we
apply that delta to the the azumith and elevation parameters that determine the position of the boom target on
screen.

Targeting : Prioritised Framing

3

2

1

3

3

3

1.Centre on Hero

2.Calculate extents of
lowest priority level

3.Minimally track to
frame extents

4.Repeat 2 & 3 for next
highest priority level

5.Apply delta to Azimuth
and Elevation

So here’s the algorithm. This is all done in the spherical space we used for the original safe zone framing
constraint.
*First we centre the frame on the hero, this is optional, but it lets you have the large safe zone without Kratos
rattling around in it when he’s on his own.
*Then we calculate the extents of the lowest priority level, *and move the frame the smallest amount required to
encompass as much of it as we can.
*Repeat at the next highest priority level until done.

When we’re done, we have the new frame. Well, what we actually have is the amount the frame moved, and we
apply that delta to the the azumith and elevation parameters that determine the position of the boom target on
screen.

Targeting : Prioritised Framing

3

2

1

3

3

3

1.Centre on Hero

2.Calculate extents of
lowest priority level

3.Minimally track to
frame extents

4.Repeat 2 & 3 for next
highest priority level

5.Apply delta to Azimuth
and Elevation

So here’s the algorithm. This is all done in the spherical space we used for the original safe zone framing
constraint.
*First we centre the frame on the hero, this is optional, but it lets you have the large safe zone without Kratos
rattling around in it when he’s on his own.
*Then we calculate the extents of the lowest priority level, *and move the frame the smallest amount required to
encompass as much of it as we can.
*Repeat at the next highest priority level until done.

When we’re done, we have the new frame. Well, what we actually have is the amount the frame moved, and we
apply that delta to the the azumith and elevation parameters that determine the position of the boom target on
screen.

Targeting : Prioritised Framing

3

2

1

3

3

3

1.Centre on Hero

2.Calculate extents of
lowest priority level

3.Minimally track to
frame extents

4.Repeat 2 & 3 for next
highest priority level

5.Apply delta to Azimuth
and Elevation

So here’s the algorithm. This is all done in the spherical space we used for the original safe zone framing
constraint.
*First we centre the frame on the hero, this is optional, but it lets you have the large safe zone without Kratos
rattling around in it when he’s on his own.
*Then we calculate the extents of the lowest priority level, *and move the frame the smallest amount required to
encompass as much of it as we can.
*Repeat at the next highest priority level until done.

When we’re done, we have the new frame. Well, what we actually have is the amount the frame moved, and we
apply that delta to the the azumith and elevation parameters that determine the position of the boom target on
screen.

Targeting : Prioritised Framing

3

2

1

3

3

3

1.Centre on Hero

2.Calculate extents of
lowest priority level

3.Minimally track to
frame extents

4.Repeat 2 & 3 for next
highest priority level

5.Apply delta to Azimuth
and Elevation

So here’s the algorithm. This is all done in the spherical space we used for the original safe zone framing
constraint.
*First we centre the frame on the hero, this is optional, but it lets you have the large safe zone without Kratos
rattling around in it when he’s on his own.
*Then we calculate the extents of the lowest priority level, *and move the frame the smallest amount required to
encompass as much of it as we can.
*Repeat at the next highest priority level until done.

When we’re done, we have the new frame. Well, what we actually have is the amount the frame moved, and we
apply that delta to the the azumith and elevation parameters that determine the position of the boom target on
screen.

Targeting : Prioritised Framing

3

2

1

3

3

3

1.Centre on Hero

2.Calculate extents of
lowest priority level

3.Minimally track to
frame extents

4.Repeat 2 & 3 for next
highest priority level

5.Apply delta to Azimuth
and Elevation

So here’s the algorithm. This is all done in the spherical space we used for the original safe zone framing
constraint.
*First we centre the frame on the hero, this is optional, but it lets you have the large safe zone without Kratos
rattling around in it when he’s on his own.
*Then we calculate the extents of the lowest priority level, *and move the frame the smallest amount required to
encompass as much of it as we can.
*Repeat at the next highest priority level until done.

When we’re done, we have the new frame. Well, what we actually have is the amount the frame moved, and we
apply that delta to the the azumith and elevation parameters that determine the position of the boom target on
screen.

Targeting : Prioritised Framing

3

2

1

3

3

3

1.Centre on Hero

2.Calculate extents of
lowest priority level

3.Minimally track to
frame extents

4.Repeat 2 & 3 for next
highest priority level

5.Apply delta to Azimuth
and Elevation

So here’s the algorithm. This is all done in the spherical space we used for the original safe zone framing
constraint.
*First we centre the frame on the hero, this is optional, but it lets you have the large safe zone without Kratos
rattling around in it when he’s on his own.
*Then we calculate the extents of the lowest priority level, *and move the frame the smallest amount required to
encompass as much of it as we can.
*Repeat at the next highest priority level until done.

When we’re done, we have the new frame. Well, what we actually have is the amount the frame moved, and we
apply that delta to the the azumith and elevation parameters that determine the position of the boom target on
screen.

Targeting : Prioritised Framing

3

2

1

3

3

3

1.Centre on Hero

2.Calculate extents of
lowest priority level

3.Minimally track to
frame extents

4.Repeat 2 & 3 for next
highest priority level

5.Apply delta to Azimuth
and Elevation

So here’s the algorithm. This is all done in the spherical space we used for the original safe zone framing
constraint.
*First we centre the frame on the hero, this is optional, but it lets you have the large safe zone without Kratos
rattling around in it when he’s on his own.
*Then we calculate the extents of the lowest priority level, *and move the frame the smallest amount required to
encompass as much of it as we can.
*Repeat at the next highest priority level until done.

When we’re done, we have the new frame. Well, what we actually have is the amount the frame moved, and we
apply that delta to the the azumith and elevation parameters that determine the position of the boom target on
screen.

Targeting : Prioritised Framing

3

2

1

3

3

3

1.Centre on Hero

2.Calculate extents of
lowest priority level

3.Minimally track to
frame extents

4.Repeat 2 & 3 for next
highest priority level

5.Apply delta to Azimuth
and Elevation

So here’s the algorithm. This is all done in the spherical space we used for the original safe zone framing
constraint.
*First we centre the frame on the hero, this is optional, but it lets you have the large safe zone without Kratos
rattling around in it when he’s on his own.
*Then we calculate the extents of the lowest priority level, *and move the frame the smallest amount required to
encompass as much of it as we can.
*Repeat at the next highest priority level until done.

When we’re done, we have the new frame. Well, what we actually have is the amount the frame moved, and we
apply that delta to the the azumith and elevation parameters that determine the position of the boom target on
screen.

Targeting : Prioritised Framing

3

2

1

3

3

3

• Use weight minimisation function
on distance to minimise extents
outside Safe Zone

• Framing weight pushes back to
maintain framing

• Distance weight pulls camera
towards characters

• No damping! Danger of oscillation.

We also replace the boom ratio element of the distance constraint.
Instead we calculate the initial position of the camera on the boom, by using the same weight minimisation
function we used to determine the position of the dolly on the rail.
This time we use the area of the target extents that remain outside the safe zone as a weight pulling the camera
back towards the dolly. While we use distance from the boom target, as a weight pushing the camera forwards
towards the action.
It’s worth noting that we try to avoid damping this distance constraint. As there’s the distinct danger of it
interfering with the damping on the dolly. Which in turn can lead to unwelcome circular oscillations.

Targeting : Prioritised Framing

So lets have a look at that in action. The large fight still looks good.

Targeting : Prioritised Framing

But the single enemy fight is much improved, and the camera can get much closer.

Problem: Birth and death of targets at bounds causes pops

Targeting : Prioritised Framing

Now that’s pretty cool, but we’re not done yet. There’s a couple of problems. The first of which is, how do we
deal with birth and death? Unlike the weighted average algorithm, this algorithm has no concept of weight, so
when a character is spawned outside of the frame...
*
We get an unsightly pop.

Problem: Birth and death of targets at bounds causes pops

Targeting : Prioritised Framing

Now that’s pretty cool, but we’re not done yet. There’s a couple of problems. The first of which is, how do we
deal with birth and death? Unlike the weighted average algorithm, this algorithm has no concept of weight, so
when a character is spawned outside of the frame...
*
We get an unsightly pop.

Problem: Birth and death of targets at bounds causes pops

Targeting : Prioritised Framing

Now that’s pretty cool, but we’re not done yet. There’s a couple of problems. The first of which is, how do we
deal with birth and death? Unlike the weighted average algorithm, this algorithm has no concept of weight, so
when a character is spawned outside of the frame...
*
We get an unsightly pop.

Solution : Tween targets in from highest priority target

Targeting : Prioritised Framing

So the solution is to add weights to the system, and use them to tween the targets in and out.
*We tween a target’s logical position between it’s physical position and the position of the Hero. We never remove
the hero target, and we’ve explicitly guaranteed that it’s going to be in frame, so we can hide the birth and death
of the other target behind it without causing a pop.

Solution : Tween targets in from highest priority target

Targeting : Prioritised Framing

So the solution is to add weights to the system, and use them to tween the targets in and out.
*We tween a target’s logical position between it’s physical position and the position of the Hero. We never remove
the hero target, and we’ve explicitly guaranteed that it’s going to be in frame, so we can hide the birth and death
of the other target behind it without causing a pop.

Targeting : Prioritised Framing

So you see that solid red sphere moving from Kratos to the Grunt after it spawns? That’s the logical target
tweening into it’s final position. You can see how it tracks the camera smoothly to frame the new creature.

Note that we tween the size as well as the position. Just in case the target is larger than Kratos.

Targeting : Prioritised Framing

So because we can now weight a target, we can also use the distance weights. Again, the solid red blobs are the
weighted targets.

Problem : The spherical approximation breaks down behind the camera

Top Down
View

Spherical
View

Targeting : Prioritised Framing

The second problem is little more tricky. Remember we’re operating in spherical space here. There’s a
discontinuity directly behind the camera where +180 wraps to -180. Watch this. The target crosses behind the
camera, and the camera pops to the other side of the player. Ouch. Worse, next frame it pops back again. Uh oh.

Previously this hasn’t been a problem, because we’ve effectively guaranteed that the target (singular) never goes
back there while the constraint is running. But now we’ve broken that promise. Or rather, we want to break it,
because it doesn’t make sense anymore.

Problem : The spherical approximation breaks down behind the camera

Top Down
View

Spherical
View

Our Hero The Enemy

Targeting : Prioritised Framing

The second problem is little more tricky. Remember we’re operating in spherical space here. There’s a
discontinuity directly behind the camera where +180 wraps to -180. Watch this. The target crosses behind the
camera, and the camera pops to the other side of the player. Ouch. Worse, next frame it pops back again. Uh oh.

Previously this hasn’t been a problem, because we’ve effectively guaranteed that the target (singular) never goes
back there while the constraint is running. But now we’ve broken that promise. Or rather, we want to break it,
because it doesn’t make sense anymore.

Problem : The spherical approximation breaks down behind the camera

Top Down
View

Spherical
View

Targeting : Prioritised Framing

The second problem is little more tricky. Remember we’re operating in spherical space here. There’s a
discontinuity directly behind the camera where +180 wraps to -180. Watch this. The target crosses behind the
camera, and the camera pops to the other side of the player. Ouch. Worse, next frame it pops back again. Uh oh.

Previously this hasn’t been a problem, because we’ve effectively guaranteed that the target (singular) never goes
back there while the constraint is running. But now we’ve broken that promise. Or rather, we want to break it,
because it doesn’t make sense anymore.

Problem : The spherical approximation breaks down behind the camera

Top Down
View

Spherical
View

Targeting : Prioritised Framing

The second problem is little more tricky. Remember we’re operating in spherical space here. There’s a
discontinuity directly behind the camera where +180 wraps to -180. Watch this. The target crosses behind the
camera, and the camera pops to the other side of the player. Ouch. Worse, next frame it pops back again. Uh oh.

Previously this hasn’t been a problem, because we’ve effectively guaranteed that the target (singular) never goes
back there while the constraint is running. But now we’ve broken that promise. Or rather, we want to break it,
because it doesn’t make sense anymore.

Problem : The spherical approximation breaks down behind the camera

Top Down
View

Spherical
View

Targeting : Prioritised Framing

The second problem is little more tricky. Remember we’re operating in spherical space here. There’s a
discontinuity directly behind the camera where +180 wraps to -180. Watch this. The target crosses behind the
camera, and the camera pops to the other side of the player. Ouch. Worse, next frame it pops back again. Uh oh.

Previously this hasn’t been a problem, because we’ve effectively guaranteed that the target (singular) never goes
back there while the constraint is running. But now we’ve broken that promise. Or rather, we want to break it,
because it doesn’t make sense anymore.

Problem : The spherical approximation breaks down behind the camera

Top Down
View

Spherical
View

Targeting : Prioritised Framing

The second problem is little more tricky. Remember we’re operating in spherical space here. There’s a
discontinuity directly behind the camera where +180 wraps to -180. Watch this. The target crosses behind the
camera, and the camera pops to the other side of the player. Ouch. Worse, next frame it pops back again. Uh oh.

Previously this hasn’t been a problem, because we’ve effectively guaranteed that the target (singular) never goes
back there while the constraint is running. But now we’ve broken that promise. Or rather, we want to break it,
because it doesn’t make sense anymore.

Problem : The spherical approximation breaks down behind the camera

Top Down
View

Spherical
View

Enemy has passed behind
camera, warping it to the

opposite side of the spherical
view

Targeting : Prioritised Framing

The second problem is little more tricky. Remember we’re operating in spherical space here. There’s a
discontinuity directly behind the camera where +180 wraps to -180. Watch this. The target crosses behind the
camera, and the camera pops to the other side of the player. Ouch. Worse, next frame it pops back again. Uh oh.

Previously this hasn’t been a problem, because we’ve effectively guaranteed that the target (singular) never goes
back there while the constraint is running. But now we’ve broken that promise. Or rather, we want to break it,
because it doesn’t make sense anymore.

Problem : The spherical approximation breaks down behind the camera

Top Down
View

Spherical
View

Enemy has passed behind
camera, warping it to the

opposite side of the spherical
view

Targeting : Prioritised Framing

The second problem is little more tricky. Remember we’re operating in spherical space here. There’s a
discontinuity directly behind the camera where +180 wraps to -180. Watch this. The target crosses behind the
camera, and the camera pops to the other side of the player. Ouch. Worse, next frame it pops back again. Uh oh.

Previously this hasn’t been a problem, because we’ve effectively guaranteed that the target (singular) never goes
back there while the constraint is running. But now we’ve broken that promise. Or rather, we want to break it,
because it doesn’t make sense anymore.

Problem : The spherical approximation breaks down behind the camera

Top Down
View

Spherical
View

Camera has moved,
causing enemy to change

sides again.

Targeting : Prioritised Framing

The second problem is little more tricky. Remember we’re operating in spherical space here. There’s a
discontinuity directly behind the camera where +180 wraps to -180. Watch this. The target crosses behind the
camera, and the camera pops to the other side of the player. Ouch. Worse, next frame it pops back again. Uh oh.

Previously this hasn’t been a problem, because we’ve effectively guaranteed that the target (singular) never goes
back there while the constraint is running. But now we’ve broken that promise. Or rather, we want to break it,
because it doesn’t make sense anymore.

Problem : The spherical approximation breaks down behind the camera

Top Down
View

Spherical
View

Camera has moved,
causing enemy to change

sides again.

Targeting : Prioritised Framing

The second problem is little more tricky. Remember we’re operating in spherical space here. There’s a
discontinuity directly behind the camera where +180 wraps to -180. Watch this. The target crosses behind the
camera, and the camera pops to the other side of the player. Ouch. Worse, next frame it pops back again. Uh oh.

Previously this hasn’t been a problem, because we’ve effectively guaranteed that the target (singular) never goes
back there while the constraint is running. But now we’ve broken that promise. Or rather, we want to break it,
because it doesn’t make sense anymore.

Problem : The spherical approximation breaks down behind the camera

Camera is now oscillating
between two states on

alternate frames. Top Down
View

Spherical
View

Targeting : Prioritised Framing

The second problem is little more tricky. Remember we’re operating in spherical space here. There’s a
discontinuity directly behind the camera where +180 wraps to -180. Watch this. The target crosses behind the
camera, and the camera pops to the other side of the player. Ouch. Worse, next frame it pops back again. Uh oh.

Previously this hasn’t been a problem, because we’ve effectively guaranteed that the target (singular) never goes
back there while the constraint is running. But now we’ve broken that promise. Or rather, we want to break it,
because it doesn’t make sense anymore.

Problem : The spherical approximation breaks down behind the camera

This is not good!

Camera is now oscillating
between two states on

alternate frames. Top Down
View

Spherical
View

Targeting : Prioritised Framing

The second problem is little more tricky. Remember we’re operating in spherical space here. There’s a
discontinuity directly behind the camera where +180 wraps to -180. Watch this. The target crosses behind the
camera, and the camera pops to the other side of the player. Ouch. Worse, next frame it pops back again. Uh oh.

Previously this hasn’t been a problem, because we’ve effectively guaranteed that the target (singular) never goes
back there while the constraint is running. But now we’ve broken that promise. Or rather, we want to break it,
because it doesn’t make sense anymore.

Solution : Apply minimum distance to target constraint, to targets

Targeting : Prioritised Framing

So how do we fix it?
*Well the solution is pretty similar to the weighting solution.
*We fix the logical position of the target, so that it never goes behind the camera. We clamp it to the plane
parallel to the camera plane, defined by the minimum distance to target constraint.

Yes, much better.

Solution : Apply minimum distance to target constraint, to targets

Targeting : Prioritised Framing

So how do we fix it?
*Well the solution is pretty similar to the weighting solution.
*We fix the logical position of the target, so that it never goes behind the camera. We clamp it to the plane
parallel to the camera plane, defined by the minimum distance to target constraint.

Yes, much better.

Solution : Apply minimum distance to target constraint, to targets

Much better!

Targeting : Prioritised Framing

So how do we fix it?
*Well the solution is pretty similar to the weighting solution.
*We fix the logical position of the target, so that it never goes behind the camera. We clamp it to the plane
parallel to the camera plane, defined by the minimum distance to target constraint.

Yes, much better.

Targeting : Prioritised Framing

So lets have a look at that in action. In this case, the solid red spheres only kick in when the constraint is applied.

And that’s pretty much it.

This came together fairly late in the development of God of War 2, but it worked pretty well, so we used it on all
the human scale boss fights in the game.

In God of War 3 it’s used in almost every fight in the game.

• Selection

• Blending

• Dynamics

• Targeting

Overview

Hero, Ares, Damping,
Weighting, Prioritisation

Blend Tree, Weights, Modes, Parameters

Animated, Dynamic, Combat

Environment, Combat, Scripting, Filtering

So there we go, that’s pretty much everything. I don’t think I left anything out this time.

Ah crap.

Thank You

• Any Questions?

email: phil_wilkins@playstation.sony.com

I’d like to thank the camera designers, all of whom have been invaluable in helping me develop this system.
Jessica Brunelle for the original God of War
Mark Simon and Steven Peterson for God of War 2
who were joined by Matt Fallows, and Josh Harrison for God of War 3
Tom Miller who wrote the original combat camera
the rest of the code team past and present,
and everyone else on the team
everyone who bought the games
and you for listening to me talk today

Any questions?

