
Deus Ex is in the Details
Augmenting the PC graphics of Deus Ex: Human Revolution using DirectX 11 technology

Matthijs De Smedt
Graphics Programmer, Nixxes Software

Overview

● Introduction

● DirectX 11 implementation

● DirectX 11 effects

Nixxes

● Founded in 1999

● Co-development with studios

● Crystal Dynamics

● IO Interactive

● Eidos-Montreal

Deus Ex: Human Revolution

● Developed by Eidos-Montreal

● Nixxes assisted with core technology

● PC version co-developed with Nixxes

● Simultaneous release in August 2011

DXHR Rendering

● Evolved Tomb Raider: Underworld engine

● New rendering features:

● Hybrid forward lighting and light pre-pass

● Improved multithreading

● Artist-controlled postprocessing system

DXHR PC Rendering Goals

● Content creation targeting consoles

● Much more GPU power available on PC

● Minimal artist time available

● How to utilize GPU’s?

PC Rendering Advantages

● New DirectX 11 features

● Shader Model 5

● Compute shaders

● Tessellation

● Improve existing effects

DirectX 11 image

Implementing DirectX 11

DirectX 11 Implementation

● Simple code compared to DX9

● Guaranteed features and formats

● No more device lost

● New API: No experience with optimization

DirectX 11 GPU Optimization

● Read-only depth buffers

● Compute shader local storage

● Gather instruction

DirectX 11 CPU Optimization

● Early on CPU was the bottleneck

● Many unique objects in scene

● Very flexible material system

● Too many state changes

DirectX 11 CPU Optimization

● Minimize state changes between drawcalls

● Instancing

● State Objects

● Constant Buffers

● Pool static vertex and index buffers

State Objects

● Bound to persistent objects

● BlendState in Material

● JIT creation and caching in hash tables

● Hash creation parameters

● More efficient than Create…State

● Creation still takes time, you might want to
prewarm state objects during startup

Constant buffers

● Bound to objects

● Light state (for forward lighting)

● Material parameters

● Instance parameters

● Other constants split by update frequency

● Drawable

● Scene

DirectX 11 image

DirectX 11 Effects

DirectX 11 effects

● Anti-aliasing

● SSAO

● Depth of Field

● Tessellation

● Soft shadows

Anti-aliasing image

● Image of MLAA buffer

Anti-aliasing

Anti-aliasing

● User preference

● DLAA

● FXAA

● MLAA

● Easy to integrate

● Quality and cost scale

Input DLAA

FXAA MLAA

Content Slide

● Text Here

● Or here

Depth of Field

Depth of Field

● Experimented with delta spreading

● Compute shader technique

● Use atomic ops to achieve point spreading

● Potential for realistic bokeh

● Too slow on 2010 hardware

Depth of Field

● DX9: PS Gaussian blur

● 9x9 filter kernel

● DX11: CS weighted Gaussian blur

● Separable

● 29x29 filter kernel

● Uses thread group shared memory as cache

● 128x2 pixels group size

Depth of Field

Input Pixel Shader Compute Shader

29x299x9

Gaussian Blur Performance

Resolution: 1920x1080 GPU: AMD HD 6970

Unweighted blur of 8bpp RGB

Kernel size PS CS Speedup

9x9 1.17ms 1.25ms 0.92x

15x15 1.48ms 1.26ms 1.17x

29x29 2.36ms 1.51ms 1.55x

41x41 3.11ms 1.74ms 1.79x

SSAO image
Screen-Space Ambient Occlusion

Screen-Space Ambient Occlusion

● Console SSAO blurs depth

● PC samples in a hemisphere

● Less artifacts

● More expensive

● Similar to Starcraft 2

SSAO bilateral blur

● DX9

● Pixel Shader with 9x9 kernel

● DX11

● Separable Compute Shader with 19x19 kernel

● Much smoother

● Reduced noise

● Small performance hit

SSAO Self-Occlusion
SSAO Off

SSAO Self-Occlusion
SSAO On

SSAO image
SSAO On

SSAO image
What actually happened

SSAO Self-Occlusion

● Problem:

● Depth buffer is not normal mapped

● Exaggerated normal maps cause hemispheres
to intersect with flat geometry

● No vertex normals available

SSAO Self-Occlusion

● Solution:

● Depth buffer contains geometry

● We want the viewspace vertex normal

● For SSAO we calculate the viewspace position

● ddx() and ddy() return the slope of any variable

● Viewspace vertex normal reconstruction:

normalize(ddx(viewpos)×ddy(viewpos))

SSAO image
Normal buffer

SSAO image
Normal reconstruction

SSAO image
SSAO On (Fixed)

Content Slide

● Text Here

● Or here

Tessellation

Content Slide

● Text Here

● Or here

Tessellation

DirectX 11 Tessellation

● New stages supported on all hardware:

● Hull Shader

● Domain Shader

● We considered these techniques:

● Detail Tessellation

● Geometry smoothing

Detail Tessellation

● Tessellate and displace

● Looks great!

● But:

● Requires height maps

● Geometry needs to be
carefully positioned to
avoid cracks

Geometry smoothing

● Smoothes the contours of characters

● Two popular techniques

● Phong Tessellation

● PN-Triangles

● Equivalent results but “Phong” is faster

Phong Tessellation

Boubekeur and Alexa, SIGGRAPH Asia 2008

Phong Tessellation

Off On

● Simple technique

● Requires only vertex position and normals

● In brief:

● Calculate tangent plane for each normal

● Interpolate between tangent planes

Content Slide

● Text Here

● Or here

Tessellation off

Tessellation on

Without Tessellation With Tessellation

Without Tessellation With Tessellation

Tessellation Cracks image

Tessellation Cracks

Tessellation Cracks

● Characters made of multiple submeshes

● Multiple vertices with the same position

● Discontinuous normals

Off On

Tessellation Cracks

● Our solution

● Generate a “Tessellation Normal” channel

● Equalizes normal for all verts in this location

● Normals weighted by triangle size

● Fixes cracks on mesh boundaries

● Low overhead

Tessellation Bulges image
Tessellation Bulges

Tessellation Bulges

● Problem:

● Hard edges have smooth normals instead

● This problem appeared in some models

● Caused by averaging normals to fix cracks!

● Phong Tessellation creates rounded geometry

● Solution:

● Artists add extra polygons on edges

Tessellation Bulges image

Original Model Fixed Model

Tessellation optimizations

● Tessellation is enabled for ~10m distance

● Fade out tessellation before disabling

● Keep the hull shader simple and fast

● Tessellation factor only distance-based

● Maximum tessellation factor of 3.0

● Do cull backfacing triangles with factor 0.0

Soft Shadows image
Soft Shadows

Soft Shadows

● SM5 shader

● 9x9 filter kernel for soft PCF

● Use GatherCmpRed to fetch 4 samples

Soft Shadows

● Problem:

● All shadow-casting lights rendered with
forward lighting

● 9x9 kernel takes seconds to compile

● Caused shader build time to explode

● Too risky to make all lights deferred

Soft Shadows

● Solution:

● Render soft shadows deferred in screen-space

● Need only one shader for the game

● Sample from soft shadow buffer during
forward lighting

● Not used for transparencies

Multi-monitor rendering

● Using vendor-specific API extensions

● You should support all configurations

● How to deal with crosshair in the bezel?

● Keep original field of view on primary monitor
using off-center projection matrix

● Pull back near clip plane when FOV is high

● Increase depth bias for decals

Stereoscopic rendering

● Using vendor-specific API extensions

● Render frame for each eye

● Culling only done once

● Stereoscopic projection matrix

Conclusions

● You can utilize PC GPU’s without extra art

● Compute Shaders are great for caching too

● Character tessellation is fast and effective

● We’re only getting started using DX11

Special thanks

● Nicolas Thibieroz

● Jon Story

● Miguel Sainz

● Tim Tcheblokov

Thank you for listening!

Any questions?

www.nixxes.com

mdesmedt@nixxes.com

