

Deus Ex is in the Details

Augmenting the PC graphics of Deus Ex: Human Revolution using DirectX 11 technology

Matthijs De SmedtGraphics Programmer, Nixxes Software

Overview

- Introduction
- DirectX 11 implementation
- DirectX 11 effects

Nixxes

- Founded in 1999
- Co-development with studios
 - Crystal Dynamics
 - IO Interactive
 - Eidos-Montreal

Deus Ex: Human Revolution

- Developed by Eidos-Montreal
- Nixxes assisted with core technology
- PC version co-developed with Nixxes
- Simultaneous release in August 2011

DXHR Rendering

- Evolved Tomb Raider: Underworld engine
- New rendering features:
 - Hybrid forward lighting and light pre-pass
 - Improved multithreading
 - Artist-controlled postprocessing system

DXHR PC Rendering Goals

- Content creation targeting consoles
- Much more GPU power available on PC
- Minimal artist time available
- How to utilize GPU's?

PC Rendering Advantages

- New DirectX 11 features
 - Shader Model 5
 - Compute shaders
 - Tessellation
- Improve existing effects

DirectX 11 Implementation

- Simple code compared to DX9
- Guaranteed features and formats
- No more device lost
- New API: No experience with optimization

DirectX 11 GPU Optimization

- Read-only depth buffers
- Compute shader local storage
- Gather instruction

DirectX 11 CPU Optimization

- Early on CPU was the bottleneck
- Many unique objects in scene
- Very flexible material system
- Too many state changes

DirectX 11 CPU Optimization

- Minimize state changes between drawcalls
 - Instancing
 - State Objects
 - Constant Buffers
 - Pool static vertex and index buffers

State Objects

- Bound to persistent objects
 - BlendState in Material
- JIT creation and caching in hash tables
 - Hash creation parameters
 - More efficient than Create...State
 - Creation still takes time, you might want to prewarm state objects during startup

Constant buffers

- Bound to objects
 - Light state (for forward lighting)
 - Material parameters
 - Instance parameters
- Other constants split by update frequency
 - Drawable
 - Scene

DirectX 11 effects

- Anti-aliasing
- SSAO
- Depth of Field
- Tessellation
- Soft shadows

Anti-aliasing

- User preference
 - DLAA
 - FXAA
 - MLAA
- Easy to integrate
- Quality and cost scale

Depth of Field

- Experimented with delta spreading
 - Compute shader technique
 - Use atomic ops to achieve point spreading
 - Potential for realistic bokeh
 - Too slow on 2010 hardware

Depth of Field

- DX9: PS Gaussian blur
 - 9x9 filter kernel
- DX11: CS weighted Gaussian blur
 - Separable
 - 29x29 filter kernel
 - Uses thread group shared memory as cache
 - 128x2 pixels group size

Gaussian Blur Performance

Kernel size	PS	CS	Speedup
9x9	1.17ms	1.25ms	0.92x
15x15	1.48ms	1.26ms	1.17x
29x29	2.36ms	1.51ms	1.55x
41x41	3.11ms	1.74ms	1.79x

Resolution: 1920x1080 GPU: AMD HD 6970

Unweighted blur of 8bpp RGB

Screen-Space Ambient Occlusion

- Console SSAO blurs depth
- PC samples in a hemisphere
 - Less artifacts
 - More expensive
 - Similar to Starcraft 2

SSAO bilateral blur

- DX9
 - Pixel Shader with 9x9 kernel
- DX11
 - Separable Compute Shader with 19x19 kernel
 - Much smoother
 - Reduced noise
 - Small performance hit

SSAO Self-Occlusion

- Problem:
 - Depth buffer is not normal mapped
 - Exaggerated normal maps cause hemispheres to intersect with flat geometry
 - No vertex normals available

SSAO Self-Occlusion

- Solution:
 - Depth buffer contains geometry
 - We want the viewspace vertex normal
 - For SSAO we calculate the viewspace position
 - ddx() and ddy() return the slope of any variable
 - Viewspace vertex normal reconstruction: normalize(ddx(viewpos)×ddy(viewpos))

DirectX 11 Tessellation

- New stages supported on all hardware:
 - Hull Shader
 - Domain Shader
- We considered these techniques:
 - Detail Tessellation
 - Geometry smoothing

Detail Tessellation

- Tessellate and displace
- Looks great!
- But:
 - Requires height maps
 - Geometry needs to be carefully positioned to avoid cracks

Geometry smoothing

- Smoothes the contours of characters
- Two popular techniques
 - Phong Tessellation
 - PN-Triangles
- Equivalent results but "Phong" is faster

Phong Tessellation

Boubekeur and Alexa, SIGGRAPH Asia 2008

Phong Tessellation

- Simple technique
- Requires only vertex position and normals
- In brief:
 - Calculate tangent plane for each normal
 - Interpolate between tangent planes

Tessellation Cracks

- Characters made of multiple submeshes
- Multiple vertices with the same position
- Discontinuous normals

Tessellation Cracks

- Our solution
 - Generate a "Tessellation Normal" channel
 - Equalizes normal for all verts in this location
 - Normals weighted by triangle size
 - Fixes cracks on mesh boundaries
 - Low overhead

Tessellation Bulges

- Problem:
 - Hard edges have smooth normals instead
 - This problem appeared in some models
 - Caused by averaging normals to fix cracks!
 - Phong Tessellation creates rounded geometry
- Solution:
 - Artists add extra polygons on edges

Tessellation optimizations

- Tessellation is enabled for ~10m distance
- Fade out tessellation before disabling
- Keep the hull shader simple and fast
 - Tessellation factor only distance-based
 - Maximum tessellation factor of 3.0
 - Do cull backfacing triangles with factor 0.0

Soft Shadows

- SM5 shader
- 9x9 filter kernel for soft PCF
- Use GatherCmpRed to fetch 4 samples

Soft Shadows

- Problem:
 - All shadow-casting lights rendered with forward lighting
 - 9x9 kernel takes seconds to compile
 - Caused shader build time to explode
 - Too risky to make all lights deferred

Soft Shadows

- Solution:
 - Render soft shadows deferred in screen-space
 - Need only one shader for the game
 - Sample from soft shadow buffer during forward lighting
 - Not used for transparencies

Multi-monitor rendering

- Using vendor-specific API extensions
- You should support all configurations
- How to deal with crosshair in the bezel?
 - Keep original field of view on primary monitor using off-center projection matrix
- Pull back near clip plane when FOV is high
- Increase depth bias for decals

Stereoscopic rendering

- Using vendor-specific API extensions
- Render frame for each eye
- Culling only done once
- Stereoscopic projection matrix

Conclusions

- You can utilize PC GPU's without extra art
- Compute Shaders are great for caching too
- Character tessellation is fast and effective
- We're only getting started using DX11

Special thanks

- Nicolas Thibieroz
- Jon Story
- Miguel Sainz
- Tim Tcheblokov

Thank you for listening! Any questions?

www.nixxes.com mdesmedt@nixxes.com