
Kasper Fauerby
Lead Programmer at IO Interactive

Crowds in Hitman:Absolution

Highlevel goals

ƀ Quality over quantity
ƀ Around 1200 agents per crowd, 500 on -screen
Å Player should not distinguish between crowd & npc actors

ƀ Ambient crowd behaviors
ƀ Mill around

ƀ Be aware of points of interest & react to player actions

ƀ Level designer has partial control of placement & movement flows

ƀ Panic crowd behaviors
Å Evacuate the crowd area
Å Help enhance the action experience of the game
Å Never get in the way of the player during action

Crowds in general
ƀ Two main approaches to crowd simulation:
ƀ Global knowledge / global solution to simulation

ƀ Continuum based crowds with dynamically updated potential fields
ƀ Impressive results, especially looking at the actual simulation
ƀ 10.000 character army charging city gates, near -perfect evacuation of buildings etc.
ƀ But: Usually requires a limited set of fixed goals

ƀ Agent based
ƀ No goals (just mill around)
ƀ Very local behavior
ƀ Movement can appear very erratic & the individual agents can seem stupid

Crowds in general
ƀ Crowds in a game

ƀ The òfun factorò is the most important thing

ƀ Perfect simulation (no intersections or stopping up) becomes secondary

ƀ Must be very dynamic and react to player actions

ƀ Level designers must have quite a lot of manual control

ƀ Each agent must visually be of an acceptable quality, even when viewed up close

ƀ My opinion
ƀ The best approach is that of a traditional, but lightweight, AI system

Our crowd system
ƀ Main components of the crowd system

ƀ Framework: The cell map, agent model, tools
ƀ AI: Steering & behavior selection
ƀ Visuals: animation and character meshes
ƀ Believability: integration with core gameplay features

The cell map
ƀWe could just add X agents to the world, but:

ƀ We need very fast navigation mesh queries
ƀ We need very fast neighborhood queries
ƀ We need very fast checks for walls & other static obstacles

ƀWe overlay a regular grid on top of the nav mesh
ƀ This means that the crowd area is only 2.5D (no overlaps in height)
ƀ Memory usage scales with area of a rectangle, even if walkable region is sparse
ƀ Each cell stores

ƀWalkable/unwalkable flag
ƀCurrent agents in cell (stored as an intrusive singly linked list)

ƀ Can also annotate the map with additional info, as needed for gameplay

The cell map

ƀCell annotations
ƀ Exclusion zones

ƀ Panic only cells

ƀ Ambient flow vectors

ƀ Teleporters

ƀ Exit zones

Agent model

ƀCraig W. Reynolds
ƀAgent òparticlesò

ƀ Position
ƀ Radius
ƀ Forward vector
ƀ Speed
ƀ Steering input

Tools: Agent placement
ƀAgents are distributed onto the cell map as:

ƀ Manually placed individuals
ƀ Manually placed groups of agents
ƀ Randomly placed agents

ƀManually placed individuals
ƀ Originally a debugging tool, but ended up being used quite a lot by level designers

ƀGroups
ƀ This is what designers really wanted!
ƀ Position and shape: spherical or square
ƀ Agent count
ƀ Optionally: A list of POIs.
ƀ Optionally: A list of idle animation overrides

The crowd framework

Crowd AI
ƀ Based on a state machine

ƀ Basic navigation states: Idle, òpending walkò, walk
ƀ Other gameplay states: Alert, dead, possessed, prone, scared etc.

ƀ State specific memory
ƀ Each state can define a òmemory classò which stores arbitrary AI memory data
ƀ Placed in fixed -size (small) memory block on each agent
ƀ Wiped & initialized when entering state

ƀEvery frame the agent òThinksò
ƀ Steps the AI, using current state and current state memory
ƀ Ask current state if a state change is wanted
ƀ In some cases, change state randomly

Steering: Pending walk
ƀ Used when

ƀ Agent is standing still, but wants to be moving.

ƀ Purpose
ƀ Find the best valid direction and time to start moving
ƀ Since agent is usually in a crowded place this requires some AI logic

ƀ Sub -phases
ƀ òSearch for directionò

ƀSend out probes to check for wall collisions and other obstructing agents
ƀProbe direction is changed every frame, favoring directions in front of agent

ƀ òWait for clearò
ƀWait until agent can start moving
ƀCommunicate a wanted state change to the agent (into walk state)

Steering: Walk
ƀ Used when

ƀ Milling about

ƀ Purpose
ƀ Move agent around, avoiding collisions with walls and other agents

ƀ Algorithm
ƀ Find preferred direction

ƀCheck for walls, and steer to avoid collision
ƀCheck for avoid zones and ambient flows
ƀApply wander behavior (Reynolds)

ƀ Sample neighborhood for dynamic obstacles, select worst threat (Reynolds)
ƀ Do òunaligned collision avoidanceò to get actual steering direction (Reynolds+)
ƀ Either accept the steering, or communitate a wish to stop moving

Steering: Panic
ƀ Same as òPending walkò / òWalkò, but tweaked differently

ƀ Higher speed means different settings for probing for walls, collecting neighbors etc

ƀ Panic steering relies heavily on òpanic flowsò
ƀ Each exit in the crowd becomes one separate òflow channelò
ƀ When cell map is generated, each flow channel is calculated
ƀ Each cell stores: direction to exit, along shortest path, and total cost to reach that exit
ƀ Each agent dynamically switches between flow channels to quickly flee the map

ƀ Needs some manual guidance/annotation in narrow spaces
ƀ Panic flows are based on modified Dijkstra algorithm
ƀ Shortest path generates choke points around corners

Steering: Key learnings
ƀ This turned out to be hard in dense environments!

ƀ Lots of òmagic numbersò to tweak
ƀ Especially hard when having multiple movement speeds

ƀ Using speed for steering
ƀ Turned out to be critical!
ƀ First decide on a initial preferred and max speed (for example: walk relaxed and walk fast)
ƀ Each steering component (wall or dynamic avoidance) then reports:

ƀNew preferred speed
ƀNew maximum possible speed

ƀ Decision is based on, for example, distance to wall or whether or not a speed change can
resolve a dynamic collision

ƀ A real human often prefers slightly changing speed over changing direction

ƀ Favor stopping to radically changing direction

Video: Steering behaviors

Behavior selection

ƀ Navigation AI automatically handles state changes

ƀMore specific AI states are handled differently
ƀ A data -driven system makes the crowd react to various players actions

ƀ For example: aiming a gun, shooting, acting suspicious

ƀ A player action spawn up to 3 user -configured zones
ƀ Radius & angle (spherical or cone)

ƀ Agent reaction type: (POI, avoid, alert, scare, go prone)

ƀ Reaction types are listed in òorder of importanceò, and a zone can override less
important zones

Behavior zones

Behavior zone pulses
ƀZones continously send òpulsesò into the crowd

ƀ This way each zone òpushesò itself on the affected agents

ƀWhen an agent is hit by a behavior pulse
ƀ Is this is now the currently most important behavior zone?

ƀCheck current agent mood (ambient, alerted, scared, paniced, dead)

ƀCheck òinflicted moodò from zone (derived from reaction type)

ƀ During òThinkò
ƀIf mood for current zone is strictly worse than the current agent mood, then we change AI state

ƀ Benefits of system
ƀ Level designer configures the behavior on a per -crowd basis
ƀ Quick and easy way to handle multiple inputs to the agents

Video: Behavior selection

Animation: First attempt
ƀWhat and how?

ƀ Fit animations on top of
simulation

ƀ Share a number of looping clips
between all agents (idle, walk,
run etc)

ƀ At any time: animation state for
an agent is two animation IDs
and a blend weight

ƀWhy?
ƀ Concerned about animation

performance
ƀ Simple to implement

Animation: First attempt
ƀ Pros

ƀ Performance was great
ƀ Navigation logic was stable
ƀ Agents can move at any speed!

ƀ Cons
ƀ Overall robotic look and feel
ƀ Foot sliding in transitions: idle -> walk -> idle
ƀ No turn/banking animations
ƀ Agent animation looks synchronized

ƀSo we added multiple loops per animation, started at random times...
ƀ Tedious and manual approach to controlling animation state from AI code
ƀ Code involved in adding new animations to the system
ƀ Hard to avoid animation glitches and blend errors

ƀ Overall
ƀ The approach was valid, but we had higher ambitions than that....

Animation: Second try
ƀ What and how?

ƀ Ambitious goal - 500 agents on screen with no foot sliding plus support for transition and
turn/banking animations

ƀ Based on heavily modified version of òNear-optimal Character Animation with Continous
Controlò
ƀ Annotated motion clips, high - level steering inputs, data driven

ƀ Agents are now moved by a trajectory channel in the animations, rather than from steering
velocity!

ƀ Each visible agent now needs a uniquely blended animation pose, much like an ordinary NPC

ƀ Why?
ƀ Player gets very close to the individual agents
ƀ We felt that having a high quality of animation on each individual was needed for achieving

a believable crowd experience
ƀ Avoid the robotic feel

Animation: Second try
ƀ Pros

ƀ Looks much better J

ƀ Completely removed tedious animation management code from the crowd AI
ƀ Greatly simplified the AI code itself

ƀ Cons
ƀ Took a lot of work to implement and optimize
ƀ In rare cases a bit more control over the animations can be useful
ƀ And very importantly: Agents reacts much slower to steering input, which makes it harder to avoid

collisions and intersections!

ƀ Overall conclusion
ƀ It was a great success!
ƀ The approach we used for crowd agents might be how we control real NPCs in future

games...

Animation

ƀCheck GDC Vault for: òAnimation
Driven Locomotion for Smoother
Navigationòfor further inspiration!
(Gabriel Leblanc, Shawn Harris, Bobby
Anguelov)

Believability

ƀMain challenges:
ƀ Core game mechanics: close combat, human shield etc

ƀ Detail animation

ƀ Visual variety

Core game mechanics

ƀNo wish to have duplicate implementation

ƀ Possession system
ƀ On-demand upgrade agent to full NPC AI

ƀ Allocates small pool of invisible NPCs

ƀ Simple API allows game programmers to switch between
crowd agent and NPC

ƀ Made it trivial to support advanced gameplay mechanics

Detail animation

ƀ Head IK

ƀ Crowd acts
ƀ Talk on phone, smoke, sit on bench

ƀ Uses possession system and existing cut -scene tools

ƀ Spawns randomly near player

ƀ Upper body acts
ƀ Lightweight overlay anims: cough, wave etc.

ƀ Can play while agent walks around

Visual variety

ƀ Unique scaling factor for each agent
ƀ Small amount: ~5%

ƀ Softens up horizon

ƀ Does wonders for percieved diversity of crowd

ƀ Diffuse texture overrides
ƀ Simply replace the diffuse texture of material

ƀ Cheap way of having red shirt, yellow shirt etc..

Performance: PS3
ƀ Some numbers: 1200 agents simulated, 500 on -screen
ƀ PPU: 5ms

ƀ Animation system: ~2ms
ƀ Crowd AI / steering: ~2ms
ƀ Framework: ~1ms

ƀ SPU: ~20ms, distributed across multiple SPUs
ƀ Animation sampling
ƀ Animation blending
ƀ Animation selection logic
ƀ Frustum and occlusion culling
ƀ Crowd AI sensors (more later)

ƀ GPU: 8ms
ƀ Listed here as an example, but obviously very dependent on render tech and meshes used
ƀ In G2: the vertex shader is limiting factor on PS3 due to skinning massive amount of vertices

Performance
ƀ Scaling?

ƀ System has very low general overhead
ƀ Scales nearly linearly with number of agents in crowd
ƀ Culled/on -screen ratio also affects performance, due to animation cost

ƀMemory layout: Agent data
ƀ On the PS3 the memory layout is one of the most important things for performance
ƀ AI: code is pretty simple, but called many times and:

ƀPerforms a lot of neighborhood searches
ƀInspects properties on all neighbor agents

ƀ Size of a full agent ~256 bytes
ƀ Separate out òagent coreò. Stores the most basic properties: position, speed etc. 36 bytes
ƀ Each agent object has a pointer to its corresponding core
ƀ Allocate all cores as a single, 128 byte aligned, block of memory (1200 agents: 42kb)
ƀ Reduces cache missing during simulation and fits on SPUs

Memory layout: Cell map
ƀ Conceptually each cell stores many different pieces of data:

ƀ Walkable/non -walkable (and other òcell flagsò)
ƀ Flow vectors
ƀ Heights
ƀ Head pointer of linked list of current occupiers

ƀ Bad implementation
ƀ Implement class ZCell, map is an array of ZCell objects

ƀ Good implementation
ƀ Map is 4 arrays, each storing a different attribute

ƀ Why?
ƀ Array of struct vs. struct of arrays
ƀ Usually an algorithm is only interested in one of the attributes

ƀWhich can then be 128 byte aligned
ƀWhich can (more easily) fit on SPU local store
ƀSpans less memory, in turn causing less cache misses

Crowd AI & steering on SPUs
ƀ Moving the entire AI code to SPU is hard

ƀ Has many dependencies between components in the system

ƀ Virtual methods

ƀ Profiling showed a few hotspots
ƀ Neighborhood gathering

ƀ Raycasting through cell map

ƀ Selecting òworst threatò for steering

ƀ All hotspots are isolated algorithms, working on a limited input!

ƀ Added sensor system
ƀ Sensor input: position and radius for neighborhood, raycast requests etc

ƀ Sensor output: Current neighborhood, current worst threat, ray results

Steering with sensor data
ƀ Sensor input is usually fixed

ƀ Probe a certain distance ahead of agent for walls

ƀ Collect around agent

ƀ Select worst threat

ƀ Sensor input is usually configured once when entering AI state

ƀ Actually, sensor output is not 1 frame delayed
ƀ (except for first frame in state)

Sensor updates on SPUs
ƀ Each job updates X number of agents

ƀ So it fans out on multiple SPUs

ƀ Needed data on local storage
ƀ Agent cores: ~42kb
ƀ For ray casts: ~16kb

ƀOur crowds have around 16k cells
ƀCell flags: Array of bytes

ƀ For neighborhood searches: ~32kb
ƀHead pointers from cell map (stored as 16bit indices)
ƀLinked list is intrusive, stored in agent cores

ƀ Sensor input/output for each of the X agents: ~3kb (30 agents per job)

ƀ In total: ~93kb of data needed. Plenty of room for code.

Conclusions
ƀ We managed to create a new crowd system that is a significant step up from
our previous system

ƀ We managed to achieve very good performance, which was necessary since
the crowd has to integrate with a full game

ƀ Having a proper layout of data is critical for performance when handling
massive amount of characters

ƀ It is a time consuming task to tweak all the magic numbers in steering code

ƀ Having proper animation on characters in very dense crowds is very hard,
since steering relies on quick reactions from the characters

Questions?

ƀ (Also feel free to email me at: kasperbf@ioi.dk)

ƀA big thank you to:

ƀ Michael Büttner

ƀ Nis Haller Baggesen

ƀ Bobby Anguelov

mailto:kasperbf@ioi.dk

