
Nikolaj Kledzik / Frans Enmark
Art Direction & Design

2011 © Nikolaj Kledzik / Frans Enmark

8Polygon – Verktygslåda

Inspiration Logotyp

Flexible Rendering for Multiple Platforms

tobias.persson@bitsquid.se

mailto:tobias.persson@bitsquid.se
mailto:tobias.persson@bitsquid.se

Breakdown
– Introduction
–Bitsquid Rendering Architecture
–Tools

Bitsquid
–High-end game engine for licensing
–Multi-platform: PC, MAC, PS3, X360, High-end mobile
–Currently powering 10 titles in production
–Production team sizes 15-40 developers

Bitsquid
–Key design principles
–Simple & lightweight code base (~200KLOC)
– Including tools

–Heavily data-driven
–Quick iteration times
–Data-oriented design

–Highly flexible...

Screenshot : WOTR

“War of the Roses”
Courtesy of Fatshark and Paradox Interactive

Screenshot : WOTR

“War of the Roses”
Courtesy of Fatshark and Paradox Interactive

Content Slide
–Text Here
–Or here

“Krater”
Courtesy of Fatshark

Krater

“Krater”
Courtesy of Fatshark

Screenshot: Shoot

“The Showdown Effect”
Courtesy of Arrowhead Game Studios & Paradox Interactive

Screenshot Hamilton

“Hamilton’s Great Adventure”
Courtesy of Fatshark

“Stone Giant”
DX11 tech demo

Flexible rendering
–Bitsquid powers a broad variety of game types
–Third-person, top-down, 2.5D side-scrollers and more

–Different types of games can have very different needs
w.r.t rendering
–30Hz vs 60Hz
–Shading & Shadows
–Post effects, etc..

–Game context aware rendering
–Stop rendering sun shadows indoors, simplified rendering in

split-screen

Flexible rendering
–Also need to run on lots of different HW-architectures
–Cannot abstract away platform differences, we need stuff

like:
–Detailed control over EDRAM traffic (X360)
–SPU offloading (PS3)
–Scalable shading architecture (forward vs deferred, baked vs

real-time)
–What can we do?
–Push the decisions to the developer!
–But, make it as easy as possible for them...

Data-driven renderer
–What is it?
–Shaders, resource creation / manipulation and flow of the

rendering pipe defined entirely in data

– In our case data == json config files
–Hot-reloadable for quick iteration times
–Allows for easy experimentation and debugging

Meet the render_config
–Defines simple stuff like
–Quality settings & device capabilities
–Shader libraries to load
–Global resource sets
–Render Targets, LUT textures & similar

–But it also drives the entire renderer
–Ties together all rendering sub-systems
–Dictates the flow of a rendered frame

Gameplay & Rendering
–GP-layer gets callback when it’s time to render a frame
–Decides which Worlds to render
–What Viewport & Camera to use when rendering the World

–GP-layer calls Application:render_world()
–Non-blocking operation – posts message to renderer
–Renderer uses its own world representation
–Don’t care about game entities and other high-level concepts
–State changes pushed to state reflection stream

Gameplay - Renderer Interaction

Viewport Layer Configuration

Resource Generators

Global Resources

Gameplay

World

Application

render_world(world, camera, viewport)

Camera

Layer Configurations
–Dictates the final ordering of batch submits in the render

back-end
–Array of layers, each layer contains
–Name – used for referencing from shader system
–Shader dictates into which layer to render

–Destination RTs & DST
–Batch sorting criteria within the layer
–Optional Resource Generator to run
–Optional Profiling scope

–Layers are rendered in the order they are declared

A Simple Layer Configuration
simple_layer_config = [

// Populate gbuffers
{ name = "gbuffer" render_targets="gbuffer0 gbuffer1" depth_stencil_target="ds_buffer"

sort="FRONT_BACK" profiling_scope="gbuffer"}

// Kick resource generator ‘linearize_depth’
{ name = "linearize_depth" resource_generator = "linearize_depth"

profiling_scope="lighting&shadows" }

// Render decals affecting albedo term
{ name = "decal_albedo" render_targets="gbuffer0" depth_stencil_target="ds_buffer"

sort="BACK_FRONT" profiling_scope="decals"}

// Kick resource generator ‘deferred_shading’
{ name = "deferred_shading" resource_generator = "deferred_shading"

profiling_scope="lighting&shadows" }
]

Resource Generators
–Minimalistic framework for manipulating GPU resources
–Array of Modifiers
–A Modifier can be as simple as a callback function provided

with knowledge of when in the frame to render
–Modifiers rendered in the order they are declared

–Used for post processing, lighting, shadow rendering,
GPU-driven simulations, debug rendering, etc..

A simple Modifier: fullscreen_pass
–Draws a single triangle covering entire viewport
– Input: shader and input resources
–Output: Destination render target(s)

// Example of a very simple resource generator using a single modifier (fullscreen_pass)
linearize_depth = [

// Converts projected depth to linear depth
{ type=”fullscreen_pass” shader=”linearize_depth” input=”ds_buffer” output=”d32f” }

]

More Modifiers
–Bitsquid comes with a toolbox of different Modifiers
– shadow_mapping, deferred_shading, compute_kernel (dx11),

edram_control (x360), spu_job (ps3), mesh_renderer,
branch, loop, generate_mips, and many many more..

–Very easy to add your own..

A peek under the hood

Parallel rendering
– Important observation: only ordering we care about is

the final back-end API calls
–Divide frame rendering into three stages

RenderContext0

RenderContext1

RenderContext2

RenderContextN

Batch Gathering

Visibible
Objects

Sort

Sort

Build Display List

DeviceContext0

DeviceContext1

DeviceContext2

DeviceContextN

DispatchInput

D3D
GCM
GLES

1 2 3

Batch Gathering
–Output from View Frustum Culling is a list of renderable

objects

–Sort on type
–Split workload into n-jobs and execute in parallel
–Rendering of an object does not change its internal state
–Draw-/state- commands written to RenderContext associated

with each job

struct Object {
uint type; // mesh, landscape, lod-selector etc
void *ptr;

};

RenderContext
–A collection of helper functions for generating platform

independent draw/state commands
–Writes commands into an abstract data-stream (raw

memory)
–When command is written to stream it’s completely self-

contained, no pointer chasing in render back-end
–Also supports platform specific commands
–e.g. DBT, GPU syncing, callbacks etc

Command Sorting
–Each command (or set of commands) is associated with a

SortCmd stored in separate “sort stream”
struct SortCmd {

uint64 sort_key;
uint offset;
uint render_context_id;

};

64-bit Sort Key Breakdown

MSB 00000000 00000000 00000000 00000000 00000000 00000000 00000000 00000000 LSB

9 Layers bits (Layer Configuration)
3 Deferred Shader Passes bits (Shader System)
32 User Defined bits (Resource Generators)
1 Instance Bit (Shader Instancing)
16 Depth Bits (Depth sorting)
3 Immediate Shader Passes bits (Shader System)

Dispatch RenderContexts
–When all RenderContexts are populated
– “sort-streams” are merged and sorted
–Not an insane amount of commands, we run a simple std::sort

–Sent to render back-end
–Back-end walks over sort-stream and translates the RC

commands into graphics API calls
– If graphics API used supports building “display lists” in

parallel we do it

Tools

Tools Architecture
–Avoids strong coupling to engine by forcing all

communication over TCP/IP
–Json as protocol

–All visualization using engine runtime
–Boot engine running tool slave script (LUA)
–Tool sends window handle to engine, engine creates child

window with swap-chain
–Write tools in the language you prefer

Editor Mirroring
–Decoupling the engine from the tools is great!
–Better code quality - clear abstraction between tool & engine
– If engine crashes due to content error - no work is lost
–Fix content error & reboot exe - tool owns state

–Strict decoupling allows us to run all tools on all
platforms
–Cross-platform file serving from host PC over TCP/IP
–Quick review & tweaking of content on target platform

Tool slaving
–Running level editor in slave

mode on Tegra 3

Working with platform specific assets
–To make a resource platform specific - add the platform

name to it’s file extension
– cube.unit -> cube.ps3.unit

–Data Compiler takes both input and output platform as
arguments
–Each resource compiler knows if it can cross-compile or not

–Allows for easy platform emulation
–Most common use case: run console assets on dev PC
–Also necessary if you need to do any kind of baking.

Profiling Graphics
–Artist friendly profiling of graphics is hard
–Context dependent
–That über-model with 300 material splits skinned to 600+ bones

might be fine - if it’s only one instance in view!
–That highly-unoptimized-super-complicated shader won’t kill your

performance - if it only ends up on 5% of the screen pixels!
–Can make sense to give some indication of how “expensive” a

specific shader is
–But what to include? Instruction count? Blending? Texture inputs?

–We don’t provide any preventive performance guiding
–Would like to - but what should it be?

Artist Performance HUD
–Graphics profiler scopes defined in Layer Configuration

& Resource Generators
–Start / Stop profiling commands in RenderContext
–Batch count, triangle / vertices count, state switches
–GPU timing using D3D11_QUERY_TIMESTAMP

–Artist friendly in-game HUD with break-down of frame
–Summery of artist relevant profiler scopes
–Config data-driven

Screenshot Artist Performance HUD

Conclusions
– It’s all about workflows
–A data-driven rendering pipe will
–Drastically increase your productivity
–Easy to try out new techniques
–Simple to debug broken stuff

–Keep your engine code clean, render system coupling in data
–Clear separation between engine and tools makes
–Your tools more stable
– It easy to run your entire tool chain on multiple platforms

Thank you! Questions?

– tobias.persson@bitsquid.se
–@tobias_persson

–slides -> www.bitsquid.se

mailto:tobias.persson@bitsquid.se
mailto:tobias.persson@bitsquid.se
http://www.bitsquid.se
http://www.bitsquid.se

Bonus Slides

Quick note on shader authoring
–Shaders authored in our in-house meta-language
–Shader snippets in HLSL/Cg & GLSL
–Über-shader approach, pre-processor branching and snippet

combining
–Shader permutations needed dictated by project material files

–Works but excludes artist from doing easy R&D :(
–Future: Shader-graph tool that ties in with Resource

Generators framework
–Super powerful but can be problematic from a performance

perspective

