
Horizon and Beyond
A look into Tomb Raider’s Tools

Jason Yao (jyao@crystald.com)
Senior Tools Software Engineer

GDC 2013

Horizon and Beyond:
A Look into Tomb Raider’s Tools

Jason Yao
Senior Tools Software Engineer
Crystal Dynamics

Agenda

1.  Introduction
2.  Horizon Features
3.  Technologies and Process
4.  Pros and Cons
5.  Summary

About You?

Horizon is…

An editor for building arbitrary
large worlds that support art &
design workflow independence,

object construction, multi-user and
real-time editing.

Horizon is…
One of the tools in Foundation, our game platform.
Foundation allows us to build the most complex

and largest levels yet at Crystal Dynamics

●  A World and Object Editor
●  Began Four Years ago
●  4 to 7 developers
●  Familiar features (to other 3D editors)
●  Focus on Productivity and Iteration
●  Sits on a feature rich, legacy win32

toolset

Horizon

Then and Now
2008
●  C++ World Editor
●  Win32 User Interface
●  File based
●  Mixed authoring workflow
●  Multi-discipline editing
●  Monolithic Workflow
●  Despised World Editor

Now
●  C# World Editor
●  Windows Presentation Foundation
●  Database oriented
●  Well defined Authoring Workflow
●  Multi-user editing
●  Modular Workflow
●  Loved World Editor

Agenda

1.  Introduction
2.   Horizon Features
3.  Technologies and Process
4.  Pros and Cons
5.  Summary

The Basics
●  A Zone is a container of placements
●  A Level is a Zone
●  An Object is a Zone

●  We call the our placements Zone Items

●  Horizon creates Zones with Zone Items

The Basics Demo

Zones and Zone Items
Zone (Ocean Vista)

Cliff A

Cherry
Tree 1

Cherry
Tree 2

Zone (Cliffside)

Cherry

Tree.mesh

hills

trees

Ledge
markup

Concurrent Authoring
●  Many authors working in the same zone
●  We use Slices
●  Slicing up a zone by user and task
●  An arbitrary number of slices
●  Show user editing status

Concurrent Authoring Example

Storage for Concurrent Authoring
Zone (HelicopterAA)

Zone Item (Mesh1)
Zone Item (Light1)
Zone Item (Light2)

Component (Physics)
Component (Animation)

Properties
Type (Object)

AA-physics.zcomponent

AA-copter_body.zslice

AA-lighting.zslice

AA.zone

Files On Disk:

Modular Construction
●  Composing Objects
●  Breaking apart Objects
●  Swapping and Replacing
●  Editing In Place
●  Fork and Edit In Place

Modular Construction Demo

Maya: Meshes in Context
●  Maya for Meshes
●  Horizon for Level Design
●  Edit meshes in the Context of a Zone
●  Two-way synchronization

●  Horizon and Maya
●  Initial Breakout to a Zone

Maya Mesh in Context Example

Building an Object
●  Same pattern as Level Creation
●  Adding Behavior
●  Adding Collision
●  Adding Physics Joints
●  Placing objects in a level

Building an Object Demo

Zone Item and Type
Zone Item

Light.ZoneItemType “light01-jyao” ID

 “SpotLight1” Display Name

Light Type

 [0,0,100] Position

 [0,0,90] Orientation

 [1,1,1] Scale

Struct {
 Attenuation= <curve>
 Color = [255,255,128]
 Intensity = 1.5f
}

Properties

Light Type ID

LightShape Shape

Lighting Selection Group

LightData Build List

Struct {
 Curve Attenuation;
 Vector3 Color;
 float Intensity;
}

Properties

{ … } Property Defaults

Object References
Zone Item

 “Helicopter1”

Position, Orientation, …

 “objref01-jyao”

Zone (HelicopterAA)
Properties

Components[]

Zone Items[]

ID

Display Name

ObjectRef Type

Struct {
 Reference = HelicopterAA
}

Properties

ObjectRef.ZoneItemType

ObjectRef Type ID

…

Live Editing in Game
●  For Placements and Properties
●  Our Fastest Iteration Loop

Live Edit Horizon/Game Demo

Other Features
●  Integrated Backup
●  Never lose more than 5 seconds

●  Script Console
●  Dynamic Lighting Workflow

Agenda

1.  Introduction
2.  Horizon Features
3.   Technologies and Process
4.  Pros and Cons
5.  Summary

Strategy
●  Focus on Quality over Quantity
●  Minimize jumping between authoring tools
●  Solve for a single game team
●  Balance long and short term architecture goals
●  Keep what works

●  Assert Often and Crash Early
●  Minimal, Well defined interface between C++, C#
●  Data is unique, statically identifiable
●  No arbitrary maximum size for input data
●  Exceed game runtime capabilities
●  Preserve position, rotation, scale and skew with

transform wrapper

Technical Design Requirements

How did we do?
ü  Assert Often and Crash Early
ü  Minimal, Well defined interface between C++, C#
ü  Data is unique, statically identifiable
o  No arbitrary maximum size for input data [PARTIALLY]
v  Exceed game runtime capabilities [NOT REALLY]
ü  Preserve position, rotation, scale and skew with

transform wrapper

Focus on User Experience
●  User Experience Director
●  Reduce mouse clicks
●  Minimize learning curve
●  Be familiar and

consistent
●  Intuitive design, less

documentation

●  Gain grassroots support
●  Improve perception and

expectations
●  Rapid “polish” feature

turnaround

High-level Architecture
●  Collaborative, simple UML Design
●  Assign Owner to each system.

Horizon (Front End)

Horizon Engine Zone Database

Horizon (Front End)
●  User Interface Management
●  Data Editing
●  Scene Navigation and Viewport
●  Pluggable architecture using reflection

Horizon (Front End)

Horizon Engine Zone Database

Horizon Engine
●  Powers the 3D Viewport
●  Manages Rendering Scenes
●  Manages Collision Scenes
●  Draw List Interface
●  Texture, Material and Mesh Cooking
●  Access to Shared Runtime Libraries

Horizon (Front End)

Horizon Engine Zone Database

Zone Database
●  Centric Asset Interface and File System
●  Management of ZDB Objects
●  Metadata system
●  Placements & Assets are uniquely identifiable by

Database ID
●  Live-Edit Connection
●  Enables concurrent authoring

Horizon (Front End)

Horizon Engine Zone Database

High-level Architecture 2
Horizon (C# + WPF)

Horizon Engine
(C++)

Zone Database
(C++)

C++/CLI

Render & Shared
Game Libs (C++)

Live-Edit, Perforce,
Data, Build (C++)

C++/CLI

Why WPF?
●  Faster iteration
●  Advanced and pretty UI creation behavior
●  Data model management separation
●  MS Expression Blends Editor
●  Larger building blocks (WPF3 and .NET 3.5)

Why not a true Database?
●  Originally, built on a File-based engine
●  Need to solve database version control
●  Heading towards a True Database

Ready for some Code?

Static Interface Pattern (C++)
class IZone : IZDBObject
{

 // Static access interface over Singleton pattern

 static IZone* Get(ZoneID zid);
 static bool Exists(ZoneID zid);
 …

 static bool Create(ZoneID zid);
 static bool Copy(ZoneID old, ZoneID new);
 …

 // Still contains Member variables

 IStructField* Add/GetComponent(ComponentID cid);
 IStructField* GetProperties();
};

Changing a Mesh Property (C#)
ZoneItemID id = new ZoneItemID(“treemesh01-jyao”);
ZoneItem zi = ZoneItem.Get(id);

string path = zi.Properties.

 GetStringValue(“meshref”, null /*default*/);

// RESULT: path == “smalltree.mesh”

zi.Properties.SetStringValue(“meshref”, “bigTree.mesh”);
// Changed to “bigTree.mesh”

Zone
Item

Notification By ID (C#)
ZIEvents ziEvents = ZoneItem.Events(zItemID);
// Register for data (property) changes

// Zone Item does not have to exist or be loaded.

ziEvents.PostModify += OnPostModifiedZoneItem;
…

// Listen for Event

void OnPostModifiedZoneItem(object sender, ModifyArgs args)
{

 if (IsPathAffected(args, “m_lightData.attenuation”))
 … // do processing.

}

Events

Zone
Item

Using Drawing Contexts (C#)
using(var shapeList =new ShapeContext(hemi, compileWhenDone))
{ // Draw a Snow Cone!!

 shapeList.IsCollidable = true;
 shapeList.CollisionID = CollideID(“MySnowCone”);
 shapeList.SetColor(rgba: [1,1,1,0.5]);
 shapeList.AddSphere(center: [0,0,0], radius: 10);

 shapeList.SetColor(rgba: [0,1,0,1]);
 shapeList.AddCone(tip:[10,10,0], base:[0,0,0], radius: 20);
} // Draw list compiled and posted to Horizon Engine

C#: Commands via Reflection
// Easy Command Declaration
[Command(“Change the position of an item”,
 Param0=“Item to change”,
 Param1=“Vector Position”)]
public static void SetPosition(ZoneItemID id, Vector3 pos) {…}

[Command(“Duplicates an item”, Param0=“Item to change”)]
public static void Duplicate(ZoneItemID id) {…}

Scripting Demo

A bit more on Process

Polish. The Wall of Tasks
Requests In Progress Done

High

Med

Low

Task Card Example

$$

Request by Morris O.

Can I have discrete a
rotation gizmo?

The Wall of Tasks Rules
●  Assign a $, $$, $$$ cost
●  Physical limit to each bucket
●  The Team owns & self-prioritizes the cards
●  80/20 time split for Scheduled/Wall tasks
●  Broadcast the completion of cards

Agenda

1.  Introduction
2.  Horizon Features
3.  Technologies and Process
4.   Pros and Cons
5.  Summary

Modular Construction Takeaway

Pros
●  Rapid construction and

reuse
●  Large set of ready

pieces
●  Fast designer blockout
●  Good for outsourcing

Cons
●  Effort to look “organic”
●  Broad affect from

content changes
●  Wholistic optimization

Modular Construction Verdict

•  We will continue to use and improve
•  Asset locking by level
•  Tools that show how changes propagate

Concurrent Authoring Takeaway

Pros
●  Slices allow

●  flexibility
●  better coordination

●  Whole team able to edit
on a single level

Cons
●  100+ slice levels
●  Slices became the

central tool for level
organization

Concurrent Authoring Verdict
●  Need a Layer System
●  Hierarchical organization
●  Independent from slices and file storage

●  Need ability to “checkout” per placement
●  Prerequisite: full database backend

Outsourcing Challenges Takeaway

Pros
●  Allowed game team to

focus on highest
priorities

●  We created a lot of
content

Cons
●  Manual merging was a

nightmare
●  Heroic efforts from

Outsourcing TA
●  We did not galvanize

our workflows soon
enough

Outsourcing Challenges Verdict

•  Outsourcing & Insourcing
•  Still very important for content generation

•  We need more automation
•  More dedicated outsourcing tools
•  Clear definition of workflows

Agenda

1.  Introduction
2.  Horizon Features
3.  Technologies and Process
4.  Pros and Cons
5.   Summary

Summary
●  Understand your scope and constraints
●  Game team driven features
●  Gain grass roots support from game team
●  Balance between generalization and

specialization
●  Optimize sooner than later
●  Importance of branding

Future Work
●  Game viewport via TCP/IP
●  Game exposes draw list interface

●  Usage analytics
●  Authoring time cost system
●  Timeline sequencing

The Team
Lead Architect

§  John Pursey

Senior Engineers
§  Jason Yao
§  Joel Hunter
§  Ife Olowe
§  Tim Pease

User Experience Director
§  Joe Stinchcomb

Engine Director
§  Gary Snethen

Thanks! and Questions?
Special Thanks to:

Gary Snethen
Jason Lacroix
John Pursey
Joe Stinchcomb
Julien Merceron
The TR TEAM!!!!

●  Please fill out survey

Contact:
Jason Yao (jyao@crystald.com)

Other Crystal Talks
Light Based Rendering in TR (Jason Lacroix)

Reinvention of Tomb Raider (Darrell Gallagher)
Croft of System Design (Jonathan Hamel)

Emotionally Engaging Cameras (Remi Lacoste)

