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About You? 



Horizon is… 

An editor for building arbitrary 
large worlds that support art & 
design workflow independence, 

object construction, multi-user and 
real-time editing. 



Horizon is… 
One of the tools in Foundation, our game platform. 
Foundation allows us to build the most complex 

and largest levels yet at Crystal Dynamics 





●  A World and Object Editor 
●  Began Four Years ago  
●  4 to 7 developers 
●  Familiar features (to other 3D editors) 
●  Focus on Productivity and Iteration 
●  Sits on a feature rich, legacy win32 

toolset 
 

Horizon 



Then and Now 
2008 
●  C++ World Editor 
●  Win32 User Interface 
●  File based 
●  Mixed authoring workflow 
●  Multi-discipline editing 
●  Monolithic Workflow 
●  Despised World Editor 

Now 
●  C# World Editor 
●  Windows Presentation Foundation  
●  Database oriented 
●  Well defined Authoring Workflow 
●  Multi-user editing 
●  Modular Workflow 
●  Loved World Editor 
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The Basics 
●  A Zone is a container of placements 
●  A Level is a Zone 
●  An Object is a Zone 

●  We call the our placements Zone Items 

●  Horizon creates Zones with Zone Items 



The Basics Demo 



Zones and Zone Items 
Zone (Ocean Vista) 

Cliff A 

Cherry 
Tree 1 

Cherry 
Tree 2 

Zone (Cliffside) 

 
Cherry 

Tree.mesh 
 

hills 

trees 

Ledge 
markup 



Concurrent Authoring 
●  Many authors working in the same zone 
●  We use Slices 
●  Slicing up a zone by user and task 
●  An arbitrary number of slices 
●  Show user editing status 



Concurrent Authoring Example 



Storage for Concurrent Authoring 
Zone (HelicopterAA) 

Zone Item (Mesh1) 
Zone Item (Light1) 
Zone Item (Light2) 

Component (Physics) 
Component (Animation) 

Properties 
Type (Object) 

AA-physics.zcomponent 

AA-copter_body.zslice 

AA-lighting.zslice 

AA.zone 

Files On Disk: 



Modular Construction 
●  Composing Objects 
●  Breaking apart Objects 
●  Swapping and Replacing 
●  Editing In Place 
●  Fork and Edit In Place 



Modular Construction Demo 



Maya: Meshes in Context   
●  Maya for Meshes 
●  Horizon for Level Design 
●  Edit meshes in the Context of a Zone 
●  Two-way synchronization  

●  Horizon and Maya  
●  Initial Breakout to a Zone 



Maya Mesh in Context Example 



Building an Object 
●  Same pattern as Level Creation 
●  Adding Behavior 
●  Adding Collision 
●  Adding Physics Joints 
●  Placing objects in a level 



Building an Object Demo 



Zone Item and Type 
Zone Item 

Light.ZoneItemType  “light01-jyao” ID 

   “SpotLight1” Display Name 

Light Type 

       [0,0,100] Position 

         [0,0,90] Orientation 

         [1,1,1] Scale 

 
Struct { 
  Attenuation=   <curve> 
  Color   =  [255,255,128] 
  Intensity    =  1.5f      
} 

Properties 

Light Type ID 

LightShape Shape 

Lighting Selection Group 

LightData Build List 

 
Struct { 
     Curve       Attenuation; 
     Vector3    Color; 
     float         Intensity; 
} 

Properties 

{ … }  Property Defaults 



Object References 
Zone Item 

 “Helicopter1” 

Position, Orientation, … 

 “objref01-jyao” 

Zone (HelicopterAA) 
Properties 

Components[] 

Zone Items[] 

ID 

Display Name 

ObjectRef Type 

 
Struct { 
  Reference = HelicopterAA 
} 

Properties 

ObjectRef.ZoneItemType 

ObjectRef Type ID 

… 



Live Editing in Game 
●  For Placements and Properties 
●  Our Fastest Iteration Loop 



Live Edit Horizon/Game Demo 



Other Features 
●  Integrated Backup 
●  Never lose more than 5 seconds 

●  Script Console  
●  Dynamic Lighting Workflow  
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Strategy 
●  Focus on Quality over Quantity 
●  Minimize jumping between authoring tools 
●  Solve for a single game team 
●  Balance long and short term architecture goals 
●  Keep what works 



●  Assert Often and Crash Early 
●  Minimal, Well defined interface between C++, C# 
●  Data is unique, statically identifiable 
●  No arbitrary maximum size for input data 
●  Exceed game runtime capabilities 
●  Preserve position, rotation, scale and skew with 

transform wrapper 

Technical Design Requirements 



How did we do? 
ü  Assert Often and Crash Early  
ü  Minimal, Well defined interface between C++, C# 
ü  Data is unique, statically identifiable 
o  No arbitrary maximum size for input data   [PARTIALLY] 
v  Exceed game runtime capabilities            [NOT REALLY] 
ü  Preserve position, rotation, scale and skew with 

transform wrapper 



Focus on User Experience 
●  User Experience Director  
●  Reduce mouse clicks 
●  Minimize learning curve 
●  Be familiar and 

consistent 
●  Intuitive design, less 

documentation 

●  Gain grassroots support 
●  Improve perception and 

expectations 
●  Rapid “polish” feature 

turnaround 



High-level Architecture 
●  Collaborative, simple UML Design 
●  Assign Owner to each system. 

Horizon (Front End) 

Horizon Engine Zone Database 



Horizon (Front End) 
●  User Interface Management 
●  Data Editing 
●  Scene Navigation and Viewport 
●  Pluggable architecture using reflection 

Horizon (Front End) 

Horizon Engine Zone Database 



Horizon Engine 
●  Powers the 3D Viewport 
●  Manages Rendering Scenes 
●  Manages Collision Scenes 
●  Draw List Interface 
●  Texture, Material and Mesh Cooking 
●  Access to Shared Runtime Libraries 

Horizon (Front End) 

Horizon Engine Zone Database 



Zone Database 
●  Centric Asset Interface and File System 
●  Management of ZDB Objects 
●  Metadata system 
●  Placements & Assets are uniquely identifiable by 

Database ID 
●  Live-Edit Connection 
●  Enables concurrent authoring 

Horizon (Front End) 

Horizon Engine Zone Database 



High-level Architecture 2 
Horizon (C# + WPF) 

Horizon Engine  
(C++) 

Zone Database  
(C++) 

C++/CLI 

Render & Shared 
Game Libs (C++) 

Live-Edit, Perforce, 
Data, Build (C++) 

C++/CLI 



Why WPF? 
●  Faster iteration  
●  Advanced and pretty UI creation behavior  
●  Data model management separation 
●  MS Expression Blends Editor 
●  Larger building blocks (WPF3 and .NET 3.5) 



Why not a true Database? 
●  Originally, built on a File-based engine 
●  Need to solve database version control 
●  Heading towards a True Database 



Ready for some Code? 



Static Interface Pattern (C++) 
class IZone : IZDBObject 
{  

  // Static access interface over Singleton pattern 

  static IZone*  Get(ZoneID zid); 
  static bool   Exists(ZoneID zid); 
  … 

  static bool   Create(ZoneID zid); 
  static bool   Copy(ZoneID old, ZoneID new); 
  … 

  // Still contains Member variables 

  IStructField*  Add/GetComponent(ComponentID cid); 
  IStructField*  GetProperties(); 
}; 



Changing a Mesh Property (C#) 
ZoneItemID id = new ZoneItemID(“treemesh01-jyao”);  
ZoneItem zi = ZoneItem.Get(id); 
 
string path = zi.Properties. 

     GetStringValue(“meshref”, null /*default*/); 

// RESULT: path == “smalltree.mesh” 

 

zi.Properties.SetStringValue(“meshref”, “bigTree.mesh”); 
// Changed to “bigTree.mesh” 

 

 

 

 



Zone 
Item 

Notification By ID (C#) 
ZIEvents ziEvents = ZoneItem.Events(zItemID);   
// Register for data (property) changes 

// Zone Item does not have to exist or be loaded. 

ziEvents.PostModify += OnPostModifiedZoneItem; 
… 

// Listen for Event 

void OnPostModifiedZoneItem(object sender, ModifyArgs args)  
{ 

  if (IsPathAffected(args, “m_lightData.attenuation”)) 
 … // do processing. 

} 

 

 

Events 

Zone 
Item 



Using Drawing Contexts (C#) 
using(var shapeList =new ShapeContext(hemi, compileWhenDone)) 
{ // Draw a Snow Cone!! 

  shapeList.IsCollidable = true; 
  shapeList.CollisionID = CollideID(“MySnowCone”); 
  shapeList.SetColor( rgba: [1,1,1,0.5] ); 
  shapeList.AddSphere( center: [0,0,0],  radius: 10 ); 
 

  shapeList.SetColor( rgba: [0,1,0,1] ); 
  shapeList.AddCone(tip:[10,10,0], base:[0,0,0], radius: 20); 
} // Draw list compiled and posted to Horizon Engine  



C#: Commands via Reflection 
// Easy Command Declaration 
[Command(“Change the position of an item”, 
          Param0=“Item to change”,  
          Param1=“Vector Position”)] 
public static void SetPosition(ZoneItemID id, Vector3 pos)  {…} 
 

 

[Command(“Duplicates an item”, Param0=“Item to change”)] 
public static void Duplicate(ZoneItemID id)  {…} 
 



Scripting Demo 



A bit more on Process 



Polish. The Wall of Tasks 
Requests In Progress Done 

High 

Med 

Low 



Task Card Example 

$$ 

Request by Morris O. 

Can I have discrete a 
rotation gizmo? 



The Wall of Tasks Rules 
●  Assign a $, $$, $$$ cost 
●  Physical limit to each bucket 
●  The Team owns & self-prioritizes the cards 
●  80/20 time split for Scheduled/Wall tasks 
●  Broadcast the completion of cards 



Agenda 

1.  Introduction 
2.  Horizon Features 
3.  Technologies and Process 
4.   Pros and Cons 
5.  Summary 



Modular Construction Takeaway 

Pros 
●  Rapid construction and 

reuse 
●  Large set of ready 

pieces  
●  Fast designer blockout 
●  Good for outsourcing 

Cons 
●  Effort to look “organic” 
●  Broad affect from 

content changes  
●  Wholistic optimization 



Modular Construction Verdict 

•  We will continue to use and improve 
•  Asset locking by level 
•  Tools that show how changes propagate 



Concurrent Authoring Takeaway 

Pros 
●  Slices allow  

●  flexibility  
●  better coordination 

●  Whole team able to edit 
on a single level 

Cons 
●  100+ slice levels 
●  Slices became the 

central tool for level 
organization 



Concurrent Authoring Verdict 
●  Need a Layer System 
●  Hierarchical organization 
●  Independent from slices and file storage 

●  Need ability to “checkout” per placement 
●  Prerequisite: full database backend 



Outsourcing Challenges Takeaway 

Pros 
●  Allowed game team to 

focus on highest 
priorities 

●  We created a lot of 
content 

Cons 
●  Manual merging was a 

nightmare 
●  Heroic efforts from 

Outsourcing TA  
●  We did not galvanize 

our workflows soon 
enough 



Outsourcing Challenges Verdict 

•  Outsourcing & Insourcing  
•  Still very important for content generation 

•  We need more automation 
•  More dedicated outsourcing tools 
•  Clear definition of workflows 
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Summary 
●  Understand your scope and constraints 
●  Game team driven features 
●  Gain grass roots support from game team 
●  Balance between generalization and 

specialization 
●  Optimize sooner than later 
●  Importance of branding 



Future Work 
●  Game viewport via TCP/IP 
●  Game exposes draw list interface 

●  Usage analytics 
●  Authoring time cost system 
●  Timeline sequencing 



The Team 
Lead Architect 

§  John Pursey  

Senior Engineers 
§  Jason Yao 
§  Joel Hunter 
§  Ife Olowe 
§  Tim Pease 

User Experience Director 
§  Joe Stinchcomb 

Engine Director 
§  Gary Snethen 



Thanks! and Questions? 
Special Thanks to: 

Gary Snethen 
Jason Lacroix 
John Pursey 
Joe Stinchcomb 
Julien Merceron 
The TR TEAM!!!! 
 
 

●  Please fill out survey 

Contact: 
Jason Yao (jyao@crystald.com) 
 

Other Crystal Talks 
Light Based Rendering in TR (Jason Lacroix) 

Reinvention of Tomb Raider (Darrell Gallagher) 
Croft of System Design (Jonathan Hamel) 

Emotionally Engaging Cameras (Remi Lacoste) 
 


