
AUTOMATED TESTING & INSTANT REPLAYS
IN RETRO CITY RAMPAGE

BRIAN PROVINCIANO | @BRIPROV
VBLANK ENTERTAINMENT

RECIPE

INGREDIENTS

1 PART RECORDED PLAYER INPUT

1 PART DETERMINISTIC ENGINE

DIRECTIONS
1. SIT BACK AND WATCH USE CASES

2. SIT BACK AND WATCH THE HOW TO!

3. ASK QUESTIONS

4. DOWNLOAD THE SOURCE CODE

PART I:

THE MANY USES OF RECORDED PLAYER INPUT

USE CASE #1

AUTOMATED QA WITH PRE-RECORDED INPUT

● Gives you piece of mind for every compile.

● Gives you access to QA 24/7.

● Allows hands-on QA be step #2.
Let your automated playthroughs be the first line of defense.

USE CASE #2

BUILT-IN AUTOMATED PLAYTHROUGHS
PS VITA:
O O O R R R LEFT LEFT LEFT R O O

NINTENDO 3DS:
B B B R R R LEFT LEFT LEFT R B B

USE CASE #3

MULTIPLE SKUS, CERTIFICATION & RE-SUBMISSIONS

● Late 2014, single-handedly/simultaneously:
● 15 SKUs, 9 console cert submissions

● Slashes the required redundant testing
● Separate regions/Separate builds

● Re-submissions

USE CASE #4

CATCHING GAMEPLAY BUGS

1.

2.

3.

USE CASE #5

USER REPLAYS

USE CASE #6

CONTROLLING NPCS DURING CUTSCENES

USE CASE #7

CLASSIC ARCADE

ATTRACT MODES

USE CASE #8

TRIMMING MEMORY

OTHER EXAMPLE USES OF RECORDED PLAYER INPUT

● Speeding up trailer/video creation

● Asynchronous multiplayer

● Improving remote QA/playtesting

● Generating analytics/heat maps
from playtesters/PAX/E3 attendees

PART II:

RECORDING INPUT

AUTOMATED QA WITH RECORDED PLAYTHROUGHS

RECORDED INPUT

● Buttons (pressed / not pressed)

● Values (ie. analog sticks)

● Events (ie. mouse click, touch drag)

● Debug Information (optional)

● Time Deltas (if your game isn’t fixed-frame)

EXAMPLE: RECORDED INPUT IN RCR

● Header – standard header data & current state

● control options, player outfit, camera zoom, etc.

● Button streams

● 1 bit per frame for pressed/released

● Analog/stick streams

● Event streams

● Mouse/Touch press/release/drag

● Debug Information
● Checksums – Verbose mode for dev (checksum per-frame), light mode for shipping (per second).

Game displays error if desync occurs.

SIMPLE COMPRESSION FOR RCR

● RLE Button Streams
● A separate stream per button = better compression

● zlib Entire File
● Super easy/fast.

PAIR EVERYTHING FOR CONSISTENCY

PART III:

BUILDING A DETERMINISTIC GAME

INITIALIZATION

● Obviously, everything must be properly initialized.

● Avoid static/global initialization.
● Pay attention to static class constructors

rand()
Implement and seed your own

TIP: Use separate instances
For example, by using a separate Rand() for gameplay vs effects,
previously recorded replays are unlikely to break if effects are added/changed.

CALLBACKS/SYSTEM EVENTS

● For example: End of song callback

● Don’t use the system/driver callback

● Implement your own based on your ‘game ticks’

MIDDLEWARE

● Not the end of the world

● Investigate!

FLOATING POINT

● A key cause of non-portable replays

● Single console – easier

● PCs – more problems (ie. AMD vs Intel, etc.)
●Manually specify precision if possible

●Be careful of drivers

● Don’t focus on portability unless you need it

SAFER
MANUALLY USING

LOW PRECISION LUTS

LESS SAFE
CHAINED MULTI-FRAME

CALCULATIONS

SANDBOXING

● No longer 100% code coverage, but 99% is still great!

● Leaderboards, Achievements, System Utilities, Online
● Use fake leaderboads, fake achievements, fake online.

● Save Games (file vs. in-memory)
● Ability to switch between

file-io & in-memory save data protects
user’s save data in shipping build.

PART IV:

DEBUGGING IT ALL

Tracking Down Bugs

● Generate a log
● Both, while recording, while playing back

● Grab a diff tool (ie. WinMerge)

● Comparing logs helps you track down issues when…

● things playback incorrectly

● things playback correctly on one system but not on another, or in Debug but not
Release, for example

BULLETPROOFING
● Keep Rendering and the Game Loop Separate

● Run Static Analyzers, Sanitizers, etc.

● Create Two Project Configs, Record/Replay Between Each:
● 32/64-bit, Debug/Release(with debugging information), Different Struct Alignment, Floating Point Model, etc.

PART V:

BUILDING BLOCKS

BATCH FILE GLOBAL AUTOMATED PLAYTHROUGHS

SELF-CONTAINED AUTOMATED PLAYTHROUGHS

● Engine must properly deinit, re-init
● WIN-WIN – results in a more robust codebase.

● Use of in-memory save game recommended
● Doesn’t affect user’s real save data.

● For RCR, loops from replay_1.rec … until file not found, then returns

control to user.

LEVEL REPLAYS

● All about state

● Simple solution:

1. Reset Level State (always)

2. IF Recording -> Start Recording
 ELSE IF Playing Back -> Start Playing Back

ENTITY CONTROL

● All about state

● Simple solution:

1. Reset Entity State (always)

2. IF Recording -> Start Recording
 ELSE IF Playing Back -> Start Playing Back

BACKWARDS COMPATIBILITY
After shipping, you must maintain old code

PART VI:

SUMMARY!

SUMMARY

● Try even if your game isn’t fully deterministic.

● You have the code already:
http://bripro.com/gdc/SimpleInputRec.cpp

● Start simple, build up.

AUTOMATED TESTING & INSTANT REPLAYS
IN RETRO CITY RAMPAGE

BRIAN PROVINCIANO | @BRIPROV
VBLANK ENTERTAINMENT

SAMPLE: HTTP://BRIPRO.COM/GDC/SIMPLEINPUTREC.CPP

