
Capturing and Visualizing
RealTime GPU Performance
in Mortal Kombat X

Adisak Pochanayon
Principal Software Engineer
NetherRealm Studio



Why make a GPU Visualizer?
● Pix and Razor Already Exist

● Great for snapshots / single frames
● Good for examining low level resources etc
● Not so good for continuous capture or for 
investigating spikes (hard to capture spike 
frame)



GPU Snooper Benefits
●Realtime Live Profiling (no need to stop game or run 
analysis app)
● Easy testing of Live scenario changes (recompile and hot-
reload pixel shader – immediately see improvements)
● Flipping binary switch in code and looking at live view 
differences
● Correct Global Hierarchy Level (vs PIX for multiple 
contexts)



GPU Snooper
● Quick Architecture Overview
● History
● Implementation
● Performance and Memory Optimizations
● Supporting multithreading and multiple contexts
● Don’t be scared – this is all “easy”*





Application GFX Rendering Engine 
Code

Frame Buffer / 
Rendering 

Output

Game Application



Multithreaded GPU 
Performance Recording

Application GFX Rendering Engine 
Code

Frame Buffer / 
Rendering 

Output

NetherRealm Current GPU Profiler Architecture

Intermediate 
Format

Hierarchical 
Performance 

Display

Frame Recording 
Manager

Display Frame Ringbuffer



GPU Snooper History
as a Debugging Tool



GPU Snooper was a Debug Tool
● GPU Hangs were a Black Box 
● Catch GPU Hangs and Stalls / Crashes

● Originally designed with “printf” debugging 
early on in the XBOne/PS4 console development 
cycle before GPU crash dumps and debugging
● Triggered by code (i.e. timer watchdog) or 
manually with console command





Implementing “printf” Debug
● Create GPU Label

● Simply memory accessible by GPU where we can write a 
value that is later read by CPU
● PS4 == context.writeImmediateAtEndOfPipe()

● Save GPU work trace
● Enter / Exit Markup already done in code for PIX / RAZOR
● Save “string” and Level
● Write pointer to string in Label



Simple GPU Batch Completion 
Recording

Application GFX Rendering Engine 
Code

GPU Snooper “Debugger”
(good for catching GPU hangs and crashes)

“printf” Analysis



GPU Snooper
Transitions into
a Profiling Tool



Request for Performance Timing?
● So… add simple timing

● Along with capturing strings (and level) also capture 
start / stop times

● Turns out to be remarkably easy to do



PS4 GPU Timer
sourceCPU = sce::Gnm::kEventWriteSourceGlobalClockCounter;
sourceGPU = sce::Gnm::kEventWriteSourceGpuCoreClockCounter;
srcSelector = sourceGPU;

GFXContext->m_dcb.writeAtEndOfPipe(
sce::Gnm::kEopFlushCbDbCaches, 
sce::Gnm::kEventWriteDestMemory, 
GPUClockTimestamp, // Shared Onion Memory
srcSelector,
0, 
sce::Gnm::kCacheActionNone, 
sce::Gnm::kCachePolicyLru
);



XBOne GPU Timer
// Create D3D Query
ID3D11Query *timestamp;
D3D11_QUERY_DESC QueryDesc;
appMemzero(&QueryDesc, sizeof(D3D11_QUERY_DESC));
QueryDesc.Query = D3D11_QUERY_TIMESTAMP;
QueryDesc.MiscFlags = 0;
pD3DDevice->CreateQuery(&QueryDesc, &timestamp);

// Inject Timestamp into GPU Context
pD3DDeviceContext->End(timestamp);



GPU Batch & Performance
Recording

Application GFX Rendering Engine 
Code

First Pass GPU Performance Profiling

“printf” Analysis



GPU Profiler ???
● So now we had timestamps
● We’re all done right?

● By computing delta’s we could see time per markup
● Added timings to printf debugging

● Wrong! Not Done  -- Problems
● One frame snapshot / Reading printf’s is a pain



Making GPU Snooper
Profiling Useable With

Visual Analysis



Solution == GUI Visualizer
● printf’s -> hierarchical time graph
● Simple very portable drawing code

● Uses only 2 render primitives
● Translucent Rectangles
● Text / Strings
● Optimization: Drawn as two batches / render calls



GPU Performance Recording

Application GFX Rendering Engine 
Code

Frame Buffer / 
Rendering 

Output

NetherRealm First-Pass GPU Profiler Display

Hierarchical 
Performance Display





Hierarchical Chart Drawing
● How did we draw the chart

● Draw background and time markers for scale
● Draw blocks that exceed a minimum time

● Time is X value
● Level (depth) is Y value
● Limited depth to a user defined maximum
● Have a small color separator on blocks

● Truncate String based on size (minimum 3 characters)
● Color of block based on quick hash of string



Visualizer == GPU Profiler
● When easy to use, people use tool

● Mostly GFX Programmers at first for optimization
● But also artists and designers when looking at bog



Implementation Details:
Game Side



GPU Performance Recording

Application GFX Rendering Engine 
Code

Frame Buffer / 
Rendering 

Output

Implementation – Game Side

Hierarchical 
Performance Display



Game and Engine Modifications
● Profiling Requires Manual Instrumentation

● 99% chance you’re already doing this
● PS4 / Razor – pushMarker / popMarker
● XB1 / PIX – BeginDrawEvent / EndDrawEvent

● We use a scoped wrapper…
● C++ object pushes marker in constructor / pops in destructor
● Compiles out completely from retail builds 



Implementation Details:
Performance Recording



GPU Performance Recording

Application GFX Rendering Engine 
Code

Frame Buffer / 
Rendering 

Output

GPU Recording Implementation

Hierarchical 
Performance Display



Implementation
GFX Context 

Wrapper

Platform 
Specific 
Context

PS4 - sce::Gnmx::GfxContext
DCB / CCB / Memory

XB1 - ID3D11DeviceContextX
ID3D11CommandList
(CreateDeferredContextX)



Implementation (Single Threaded)
GFX Context 

Wrapper

Platform 
Specific 
Context

GPU Snooper 
Context Data

Capture Buffer
Capture 
Buffer

Ca
Bu



Implementation GPU Snooper 
Context Data

Capture Buffer

Capture 
Buffer

Ca
Bu



Capture GPU Snooper 
Context Data

Capture Buffer

+ P A R E N T

+ Begin Marker Tag

Timer Index

Event Description

Null Terminator

- End Marker Tag



Capture GPU Snooper 
Context Data

Capture Buffer

+ P A R E N T +
C H I L D

+ Begin Marker Tag

Timer Index

Event Description

Null Terminator

- End Marker Tag



Capture GPU Snooper 
Context Data

Capture Buffer

+ P A R E N T +
C H I L D -

-

+ Begin Marker Tag

Timer Index

Event Description

Null Terminator

- End Marker Tag



Capture GPU Snooper 
Context Data

Capture Buffer

+ P A R E N T +
C H I L D -

- - -

+ Begin Marker Tag

Timer Index

Event Description

Null Terminator

- End Marker Tag



Implementation Details:
Capture Analysis



Analysis of the Data
● Parse Capture Buffer List for Events
● Read Associated Timer for Start / Stop
● Determine Hierarchy Level by Nesting
● Transfer the data to a PerfSnapshot struct
for visualization rendering routines



Implementation Details:
Multithreading



Multithreaded Implementation
● Parallel context structures

● Per thread GFX contexts
● Single threaded because each thread gets 
their own version

● Lock-Free Pool (SList) for Timers
● Lock Accessed list of Snooper Data 
Structs



Multithreading
● Simplest version is just one main context 
calling deferred sub-contexts in a row and 
keeping a list of them.
● But how do you handle allowing any 
context to call a deferred sub-context at 
any time?



Multithreading GFX Contexts

GFX Context 
Wrapper

Snooper Data

Capture 
Buffer

Capture 
Buffer



Multithreading

GFX Context 
Wrapper A

Snooper Data 1

Snooper 
Data List

Command 
List

GFX B



MT: Call = Split

GFX Context 
Wrapper A

Snooper Data 1

Snooper 
Data List

Command 
List

GFX B Snooper Data 2



MT: Call = Split

GFX Context 
Wrapper A

Snooper Data 1

Snooper 
Data List

Command 
List

GFX B Snooper Data 2

Snooper Data 3



Multithreading

GFX Context 
Wrapper A

Snooper Data 1

Snooper 
Data List

Command 
List

GFX B



MT: Call = Transfer

GFX Context 
Wrapper A

Snooper 
Data List

Command 
List

GFX B Snooper Data 1



MT: Call = Transfer

GFX Context 
Wrapper A

Snooper 
Data List

Command 
List

GFX B Snooper Data 1

Snooper Data 2



Multithreading
● At frame submission time, we will have an 
list of GPU Snooper Data structures that we 
can process (in order)
● Analysis is exactly the same for MT as ST 
just potentially split across multiple 
“chunks”



Multithreaded GPU 
Performance Recording

Application GFX Rendering Engine 
Code

Frame Buffer / 
Rendering 

Output

NetherRealm Second-Pass GPU Profiler Display

Hierarchical 
Performance Display



Implementation Details:
Miscellaneous



Optimizations
● GPU performance impact very minimal
● Optimizations are primarily on the CPU 
side (performance and memory)

● Single-threaded code when possible (per context)
● Lock Free Pools for Multithreaded Allocations
● Byte-Packed Capture Buffers
● Timers addressed by Index rather than Pointer



Usability notes
● Performed a couple days of tuning 
controls and GUI Visualizer

● Getting zoom, movement, etc to feel natural
● Example, original zoom was painful
● Scale pan so it moves the same pixel speed regardless 
of zoom
● Added “Key Chart”



Implementation Details:
Continuous

Frame Recording



Frame & Performance Recording
● Keep around more Intermediate 
Performance Records (i.e. larger N)
● Record Framebuffer Output

● Simple Memory Ring Buffer of Scaled Output Frames
● Can tie GPU Snooper capture to a frame
● Allows freezing and scanning back & forth in time



Multithreaded GPU 
Performance Recording

Application GFX Rendering Engine 
Code

Frame Buffer / 
Rendering 

Output

NetherRealm Current GPU Profiler Architecture

Intermediate 
Format

Hierarchical 
Performance 

Display

Frame Recording 
Manager

Display Frame Ringbuffer



FRAME RECORDING



GPU Snooper:
The Future ???



Where do we go from here
● Some future work already planned / 
started
● Additional ideas



Multithreaded GPU 
Performance Recording

Application GFX Rendering Engine 
Code

Frame Buffer / 
Rendering 

Output

NetherRealm Current GPU Profiler Architecture

Intermediate 
Format

Hierarchical 
Performance 

Display

Frame Recording 
Manager

Display Frame Ringbuffer



MT GPU Render Recording

Application GFX Rendering Engine 
Code

Frame Buffer / 
Rendering 

Output

NetherRealm Profiler Architecture Future Goals?

Intermediate 
Format

Hierarchical 
Performance 

Display

Frame Recording 
Manager

Display Frame Ringbuffer

Async Compute Recording

Performance 
Recording Runtime 

Manager



MT GPU Render Recording

Application GFX Rendering Engine 
Code

Frame Buffer / 
Rendering 

Output

NetherRealm Profiler Architecture Future Goals?

Intermediate 
Format

Hierarchical 
Performance 

Display

Frame Recording 
Manager

Display Frame Ringbuffer

Multithreaded CPU Performance 
Recording / Spike Recording

Async Compute Recording

Performance 
Recording Runtime 

Manager

Networked / Remote / 
Realtime & Offline 

Analyzer



Contact Info
Adisak Pochanayon

adisak@wbgames.com
Twitter: @adisak



QUESTIONS ???





●Click to edit Master text styles
● Second level

●Third level
●Fourth level

●Fifth level


