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Why make a GPU Visualizer?
● Pix and Razor Already Exist

● Great for snapshots / single frames
● Good for examining low level resources etc
● Not so good for continuous capture or for 
investigating spikes (hard to capture spike 
frame)



GPU Snooper Benefits
●Realtime Live Profiling (no need to stop game or run 
analysis app)
● Easy testing of Live scenario changes (recompile and hot-
reload pixel shader – immediately see improvements)
● Flipping binary switch in code and looking at live view 
differences
● Correct Global Hierarchy Level (vs PIX for multiple 
contexts)



GPU Snooper
● Quick Architecture Overview
● History
● Implementation
● Performance and Memory Optimizations
● Supporting multithreading and multiple contexts
● Don’t be scared – this is all “easy”*





Application GFX Rendering Engine 
Code

Frame Buffer / 
Rendering 

Output

Game Application



Multithreaded GPU 
Performance Recording

Application GFX Rendering Engine 
Code

Frame Buffer / 
Rendering 

Output

NetherRealm Current GPU Profiler Architecture

Intermediate 
Format

Hierarchical 
Performance 

Display

Frame Recording 
Manager

Display Frame Ringbuffer



GPU Snooper History
as a Debugging Tool



GPU Snooper was a Debug Tool
● GPU Hangs were a Black Box 
● Catch GPU Hangs and Stalls / Crashes

● Originally designed with “printf” debugging 
early on in the XBOne/PS4 console development 
cycle before GPU crash dumps and debugging
● Triggered by code (i.e. timer watchdog) or 
manually with console command





Implementing “printf” Debug
● Create GPU Label

● Simply memory accessible by GPU where we can write a 
value that is later read by CPU
● PS4 == context.writeImmediateAtEndOfPipe()

● Save GPU work trace
● Enter / Exit Markup already done in code for PIX / RAZOR
● Save “string” and Level
● Write pointer to string in Label
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GPU Snooper
Transitions into
a Profiling Tool



Request for Performance Timing?
● So… add simple timing

● Along with capturing strings (and level) also capture 
start / stop times

● Turns out to be remarkably easy to do



PS4 GPU Timer
sourceCPU = sce::Gnm::kEventWriteSourceGlobalClockCounter;
sourceGPU = sce::Gnm::kEventWriteSourceGpuCoreClockCounter;
srcSelector = sourceGPU;

GFXContext->m_dcb.writeAtEndOfPipe(
sce::Gnm::kEopFlushCbDbCaches, 
sce::Gnm::kEventWriteDestMemory, 
GPUClockTimestamp, // Shared Onion Memory
srcSelector,
0, 
sce::Gnm::kCacheActionNone, 
sce::Gnm::kCachePolicyLru
);



XBOne GPU Timer
// Create D3D Query
ID3D11Query *timestamp;
D3D11_QUERY_DESC QueryDesc;
appMemzero(&QueryDesc, sizeof(D3D11_QUERY_DESC));
QueryDesc.Query = D3D11_QUERY_TIMESTAMP;
QueryDesc.MiscFlags = 0;
pD3DDevice->CreateQuery(&QueryDesc, &timestamp);

// Inject Timestamp into GPU Context
pD3DDeviceContext->End(timestamp);
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GPU Profiler ???
● So now we had timestamps
● We’re all done right?

● By computing delta’s we could see time per markup
● Added timings to printf debugging

● Wrong! Not Done  -- Problems
● One frame snapshot / Reading printf’s is a pain



Making GPU Snooper
Profiling Useable With

Visual Analysis



Solution == GUI Visualizer
● printf’s -> hierarchical time graph
● Simple very portable drawing code

● Uses only 2 render primitives
● Translucent Rectangles
● Text / Strings
● Optimization: Drawn as two batches / render calls
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Hierarchical Chart Drawing
● How did we draw the chart

● Draw background and time markers for scale
● Draw blocks that exceed a minimum time

● Time is X value
● Level (depth) is Y value
● Limited depth to a user defined maximum
● Have a small color separator on blocks

● Truncate String based on size (minimum 3 characters)
● Color of block based on quick hash of string



Visualizer == GPU Profiler
● When easy to use, people use tool

● Mostly GFX Programmers at first for optimization
● But also artists and designers when looking at bog



Implementation Details:
Game Side



GPU Performance Recording

Application GFX Rendering Engine 
Code

Frame Buffer / 
Rendering 

Output

Implementation – Game Side

Hierarchical 
Performance Display



Game and Engine Modifications
● Profiling Requires Manual Instrumentation

● 99% chance you’re already doing this
● PS4 / Razor – pushMarker / popMarker
● XB1 / PIX – BeginDrawEvent / EndDrawEvent

● We use a scoped wrapper…
● C++ object pushes marker in constructor / pops in destructor
● Compiles out completely from retail builds 



Implementation Details:
Performance Recording
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Implementation
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Implementation Details:
Capture Analysis



Analysis of the Data
● Parse Capture Buffer List for Events
● Read Associated Timer for Start / Stop
● Determine Hierarchy Level by Nesting
● Transfer the data to a PerfSnapshot struct
for visualization rendering routines



Implementation Details:
Multithreading



Multithreaded Implementation
● Parallel context structures

● Per thread GFX contexts
● Single threaded because each thread gets 
their own version

● Lock-Free Pool (SList) for Timers
● Lock Accessed list of Snooper Data 
Structs



Multithreading
● Simplest version is just one main context 
calling deferred sub-contexts in a row and 
keeping a list of them.
● But how do you handle allowing any 
context to call a deferred sub-context at 
any time?



Multithreading GFX Contexts

GFX Context 
Wrapper

Snooper Data

Capture 
Buffer

Capture 
Buffer



Multithreading

GFX Context 
Wrapper A

Snooper Data 1

Snooper 
Data List

Command 
List

GFX B



MT: Call = Split

GFX Context 
Wrapper A

Snooper Data 1

Snooper 
Data List

Command 
List

GFX B Snooper Data 2



MT: Call = Split

GFX Context 
Wrapper A

Snooper Data 1

Snooper 
Data List

Command 
List

GFX B Snooper Data 2

Snooper Data 3



Multithreading

GFX Context 
Wrapper A

Snooper Data 1

Snooper 
Data List

Command 
List

GFX B



MT: Call = Transfer

GFX Context 
Wrapper A

Snooper 
Data List

Command 
List

GFX B Snooper Data 1



MT: Call = Transfer

GFX Context 
Wrapper A

Snooper 
Data List

Command 
List

GFX B Snooper Data 1

Snooper Data 2



Multithreading
● At frame submission time, we will have an 
list of GPU Snooper Data structures that we 
can process (in order)
● Analysis is exactly the same for MT as ST 
just potentially split across multiple 
“chunks”
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Implementation Details:
Miscellaneous



Optimizations
● GPU performance impact very minimal
● Optimizations are primarily on the CPU 
side (performance and memory)

● Single-threaded code when possible (per context)
● Lock Free Pools for Multithreaded Allocations
● Byte-Packed Capture Buffers
● Timers addressed by Index rather than Pointer



Usability notes
● Performed a couple days of tuning 
controls and GUI Visualizer

● Getting zoom, movement, etc to feel natural
● Example, original zoom was painful
● Scale pan so it moves the same pixel speed regardless 
of zoom
● Added “Key Chart”
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Frame & Performance Recording
● Keep around more Intermediate 
Performance Records (i.e. larger N)
● Record Framebuffer Output

● Simple Memory Ring Buffer of Scaled Output Frames
● Can tie GPU Snooper capture to a frame
● Allows freezing and scanning back & forth in time
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FRAME RECORDING



GPU Snooper:
The Future ???



Where do we go from here
● Some future work already planned / 
started
● Additional ideas
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Contact Info
Adisak Pochanayon

adisak@wbgames.com
Twitter: @adisak



QUESTIONS ???





●Click to edit Master text styles
● Second level

●Third level
●Fourth level

●Fifth level


