
Real-Time BC6H 
Compression on GPU

Krzysztof Narkowicz
Lead Engine Programmer
Flying Wild Hog



Introduction

● BC6H is lossy block based compression designed for FP16 HDR 
textures

● Hardware supported since DX11 and current-gen consoles

● Fixed size 4x4 texel blocks

● No alpha

● 6:1 compression ratio (8bits per texel)

● Great replacement of hacky encodings like RGBE, RGBM, RGBK...



A Bag Of Tricks

● Signed or unsigned half floats

● Mix of three algorithms:

• Endpoints and indices

• Delta compression

• Partitioning

● Different compression modes selected per 

block



BC6H Endpoints And Indices

● Two endpoints and 16 indices are stored per block

● Endpoints define a line segment in RGB space

● Indices define location of every texel in a block on this segment



BC6H Delta Compression

● First endpoint stored in higher precision

● Signed offset between endpoints is stored instead of second endpoint

● Increases quality for blocks with similar values



BC6H Partitioning

● Allows two separate line segments per block

● Increases quality for blocks containing a large color variation

● Use one of 32 predefined partitions to assign current texel to one of 
two line segments



BC6H Partitioning With Delta Compression

● One base endpoint is stored directly

● Other 3 are stored as signed offsets from the base endpoint

● Helps with limited endpoint precision



BC6H Modes

● 14 different modes:

• 1 mode which doesn’t use partitioning or delta compression

• 3 modes which use just delta compression

• 1 mode which uses just partitioning

• 9 modes which use partitioning and delta compression

● Modes choose different tradeoffs between endpoints precision and 
offset precision



Optimal Compression Is Hard

● There are 10 modes with partitioning

● Every one of those requires finding 4 endpoints and 16 optimal indices
per every partition (and we have 32 partitions)

● Huge search space



Real-Time Compression on GPU

● Typical cases:

• Dynamic env maps

• HDR textures transcribed at runtime from other formats

• User generated content

● GPU based compression avoids CPU-GPU synchronization and data 
transfer between CPU and GPU



Our Use Case

● Dynamic lighting conditions

● Procedural world geometry

● Generate nearby env maps during camera movement

● Compress generated env maps to BC6H in real-time

● Enables dense env map placement



Real-Time Compression

● Performance or quality?

● “Fast”

• Performance is crucial

• Quality doesn’t have to be top notch

● “Quality” 

• Quality is important

• Compression can take a few ms



“Fast” Preset

● Which modes?

• Modes with partitioning are too slow

• Modes with only delta compression are fast, but improve only a 
few specific cases

● Mode 11

• Just endpoints and indices

• Two endpoints quantized to 10 bit floating points

• 16 indices (4 bits per index)



Endpoints

● Compute RGB bounding box of the block’s texels [Waveren 06]

● Use it’s min and max values as endpoints



RGB BBox Inset

● Inset RGB bbox by a small percentage for better precision



RGB BBox Inset

● HDR data leads to very large offsets



RGB BBox Inset Results

Reference Compressed



RGB BBox Refine

● Rebuild bbox using the second smallest and second largest R, G and B



RGB BBox Refine Results

Reference Compressed



Indices

● Need to select one of 16 interpolated colors on segment between 
endpoints

● Project on segment and pick nearest index



Indices

● Not so simple as interpolation weight’s aren’t evenly distributed:

● Simple approximation is to fit equation for smallest error:

𝐼𝑛𝑑𝑒𝑥𝑖 = 𝐶𝑙𝑎𝑚𝑝[𝑡𝑒𝑥𝑒𝑙𝑃𝑜𝑠𝑖 ∗
14

15
+
1

30
, 0,15]



Fix-up Index

● MSB of the first index is implicitly assumed to be zero and isn’t stored

● We need to ensure this property by swapping endpoints



Quality Comparison

● RMSE, MSE, PSNR are very bad error metrics for HDR images

● A slight round-off error for very bright pixels results in incorrectly high 
RMSE

● RMSLE [Richter 14]

𝑅𝑀𝑆𝐿𝐸 =
1

𝑛
 

𝑖

𝑛

log 𝑥𝑖 + 1 ) − log 𝑦𝑖 + 1
2



“Fast” Preset Results

● Intel timings on i7 860

● “Fast” preset and DirectXTex timings on AMD R9 270 (mid range GPU)

● 256x256 env map with mip maps - 0.07ms

“Fast” 
preset

Intel 
“very 
fast”

Intel
“fast”

Intel
“very 
slow”

DirectX
Tex

RMSLE 0.0552 0.0470 0.0307 0.0293 0.0413

Mp/s 8022.40 63.10 5.35 0.33 0.65



“Fast” Preset Results

Reference Compressed



“Fast” Preset Results

Reference Compressed



“Quality” Preset

● Increasing quality requires partitioning

● We tested all modes with partitioning and picked two most important

● Mode 2

• 7 bits per first endpoint

• 6 bits per 3 signed offsets

● Mode 6

• 9 bits per first endpoint

• 5 bits per 3 signed offsets

● All use 3 bits per index



Endpoints

● Compute two RGB bounding boxes per partition as there are two RGB 
line segments now

● Use their min and max corners as endpoints

● 32 partitioning modes



Indices

● Compute indices per partition using similar approximation as before

● Two fix-up indices:

• For the first segment it’s the first index

• For the second segment it’s specified by a predefined lookup table



Selecting Mode And Partition

● We compress block in 65 ways

• 2 partitioning modes with 32 partitions each

• 1 non partitioning mode (mode 11)

● Compute compression error for every combination

● Again using RMSLE (log2)

● Pick combination with the lowest error



“Quality” Preset Results

● 256x256 env map with mip maps – 6.84 ms

● Quality is comparable to offline compressors

“Fast” 
preset

“Quality” 
preset

Intel 
“very 
fast”

Intel
“fast”

Intel
“very 
slow”

DirectX
Tex

RMSLE 0.0552 0.0333 0.0470 0.0307 0.0293 0.0413

Mp/s 8022.4 143.55 63.10 5.35 0.33 0.65



“Quality” Preset Results

Reference Compressed



DX11 Implementation

● Render to a 16 times smaller R32G32B32A32_Uint temporary target

● Run pixel shader and output compressed blocks as pixels

● Copy results to a BC6H texture (CopyResource)

● Using modern APIs:

• Skip the copy step

• Implement as an async compute



Shader Optimization

● Fetch source texels using gather 

● Replace 16 bit integer math with float math

● Tightly bit pack lookup tables into unsigned integers



Embedding palletized sprites in shader code

https://www.shadertoy.com/view/XtlSD7



Misc

● Source code, example application and test images on GitHub:

• https://github.com/knarkowicz/GPURealTimeBC6H

● Thanks:

• Mark Cerny (presentation’s mentor)

• Michał Iwanicki for helping me with the slides

● Contact me:

• @knarkowicz

• k.narkowicz@gmail.com



Questions?Questions?



References

● [Waveren 06] J.M.P. van Waveren, “Real-Time DXT Compression”, 
2006

● [Richter 14] Thomas Richter, “HDR Image Quality in the Evolution of 
JPEG XT”, MMSP 2014


