Conservative Rasterization and Raster Order Views

Rahul Sathe, Evgeny Makarov
Senior DevTech Engineer
NVIDIA
Programmable Sample Locations

Rahul Sathe
Senior DevTech Engineer
NVIDIA
Agenda

● Motivation: Programmable Sample Locations
● Rasterization Basics
● Conservative Rasterization
● Algorithm
 ● Pull mode interpolation
● Clipper Issues and the work-arounds
● Temporal super sampling/TAA
● Future
Motivation

- Samples layout: Uniform Grid
 - Aliasing: Geometric, shader and texture
- Temporal super-sampling
 - Desired feature to tackle flickering
- Ray tracing requires richer sample patterns
 - Halton (2, 3), 0-2, Sobol Sequence etc.
Rasterization Basics

- **Rasterizer**
 - **Fixed Function**
- **Rasterization**:
 - $P(x,y)$ inside
Rasterization Basics
Rasterization Basics
Rasterization Basics
Rasterization Basics

- Edge Equations in Screen Space
 - $Ax + By + C < 0$: Inside
 - $Ax + By + C > 0$: Outside
 - $Ax + By + C = 0$: On the edge

- Top-left rule when on the edge

- Hierarchical rasterization
Rasterization Basics

- **Edge Equations in Screen Space**
 - \(Ax+By+C < 0\) : Inside
 - \(Ax+By+C > 0\) : Outside
 - \(Ax+By+C = 0\) : On the edge

- **Top-left rule when on the edge**

- **Hierarchical rasterization**
Conservative Rasterization
Conservative Rasterization
Conservative Rasterization

- Rasterizes pixels if their extents overlap the primitive
- Feature Level 12_1
- APIs: D3D12 and D3D11.3
- Tier 3: SV_InnerCoverage
Conservative Rasterization

- Rasterizes pixels if their extents overlap the primitive
- Feature Level 12_1
- APIs: D3D12 and D3D11.3
- Tier 3: SV_InnerCoverage
Algorithm
Algorithm
Algorithm

- **GS**
 - edge equations
- **Conservative Rasterizer**
- **PS**
 - Random offsets
 - If outside discard
 - If inside interpolate
 - Output the depth
Algorithm

- **GS**
 - edge equations
- **Conservative Rasterizer**
- **PS**
 - Random offsets
 - If outside discard
 - If inside interpolate
 - Output the depth
Algorithm

- GS
 - edge equations
- Conservative Rasterizer
- PS
 - Random offsets
 - If outside discard
 - If inside interpolate
 - Output the depth
Algorithm

- GS
 - edge equations
- Conservative Rasterizer
- PS
 - Random offsets
 - If outside discard
 - If inside interpolate
 - Output the depth
Algorithm

- GS
 - edge equations
- Conservative Rasterizer
- PS
 - Random offsets
 - If outside discard
 - If inside interpolate
 - Output the depth
Algorithm

- GS
 - edge equations
- Conservative Rasterizer
- PS
 - Random offsets
 - If outside discard
 - If inside interpolate
 - Output the depth
Pull mode interpolation

- Interpolation is done in the shader
 - EvaluateAttributeAtCentroid
 - EvaluateAttributeAtSample
 - EvaluateAttributeSnapped
 - 16x16 possible discrete offsets
Other Interesting Details

- SV_Depth output forces the late Z/stencil
- Consistent offsets from a given viewpoint
- SampleCount > 1
 - PS should generate per sample output depth
 - Pass SV_SampleIndex as input to the PS
Clipper
Clipper

- Clips large triangles
- $1.f - (1.f - t) \neq t$
- Must use fixed point math
- But the GS sent the original triangle’s edge equations
- Pixels along shared edges get shaded multiple times
Clipper

- Clips large triangles
- \(1.f - (1.f - t) \neq t\)
- Must use fixed point math
- But the GS sent the original triangle’s edge equations
- Pixels along shared edges get shaded multiple times
Clipper

- Clips large triangles
- \(1.0 - (1.0 - t) \neq t\)
- Must use fixed point math
- But the GS sent the original triangle’s edge equations
- Pixels along shared edges get shaded multiple times
Clipper

- Clips large triangles
- $1.f - (1.f - t) \neq t$
- Must use fixed point math
- But the GS sent the original triangle’s edge equations
- Pixels along shared edges get shaded multiple times
Clipper

- Clips large triangles
- $1.f - (1.f - t) \neq t$
- Must use fixed point math
- But the GS sent the original triangle’s edge equations
- Pixels along shared edges get shaded multiple times
Clipper

- Clips large triangles
- \(1.f - (1.f - t) \neq t\)
- Must use fixed point math
- But the GS sent the original triangle’s edge equations
- Pixels along shared edges get shaded multiple times
Clipper

- Clips large triangles
- $1.f - (1.f - t) \neq t$
- Must use fixed point math
- But the GS sent the original triangle’s edge equations
- Pixels along shared edges get shaded multiple times
Clipper

- Clips large triangles
- $1.f - (1.f - t) \neq t$
- Must use fixed point math
- But the GS sent the original triangle’s edge equations
- Pixels along shared edges get shaded multiple times
Raster Order Views
Raster Order Views

- SM5.1 with D3D11.3
- Similar to UAVs, but
- Impose API ordering
Raster Order Views

- SM5.1 with D3D11.3
- Similar to UAVs, but
- Impose API ordering
Raster Order Views

- SM5.1 with D3D11.3
- Similar to UAVs, but
-Impose API ordering
Raster Order Views

- SM5.1 with D3D11.3
- Similar to UAVs, but
- Impose API ordering
Raster Order Views

- SM5.1 with D3D11.3
- Similar to UAVs, but
- Impose API ordering
Raster Order Views

- SM5.1 with D3D11.3
- Similar to UAVs, but
- Impose API ordering
Handling clipped triangles
Handling clipped triangles

- Initialize ROV with -1
- GS assigns primId
- PS

  ```
  if (Input.primId != ROV[xy]) {
    ROV[xy] = Input.primId;
    Shade();
  } else
    discard;
  ```
- SV_Innercoverage
Handling clipped triangles

- Initialize ROV with -1
- GS assigns primId
- PS
  ```
  if (Input.primId != ROV[xy]) {
    ROV[xy] = Input.primId;
    Shade();
  } else
    discard;
  ```
- SV_Innercoverage
Handling clipped triangles

- Initialize ROV with -1
- GS assigns primId
- PS

```c
if (Input.primId != ROV[xy]) {
    ROV[xy] = Input.primId;
    Shade();
} else
    discard;
```
- SV_Innercoverage
Handling clipped triangles

- Initialize ROV with -1
- GS assigns primId
- PS

  ```
  if (Input.primId != ROV[xy]) {
      ROV[xy] = Input.primId;
      Shade();
  } else
    discard;
  ```
- SV_Innercoverage
Clipping when $w < 0$

- Produces external projections on $w = 1$
- Cannot use edge equations 😞

Clipping when $w < 0$
Clipping when $w < 0$

- Clip against the front plane in the GS
 - Might produce inconsistent vertices
 - But they are on the same edge \rightarrow same coefficients
- When both the vertices are behind the eye
 - Mark as invalid edge
 - Skip in-out tests in the PS
Temporal Super-sampling

- Plays well with the Temporal AA
- Filter Weights must be calculated per pixel
- Rest of the algorithm stays same
- Tends to have less flickering
Future

- Avoid Geometry Shader and late Z/stencil
- Shade @ pixel rate when SampleCount > 1
- Foveated rendering
References

- Microsoft. (2015). *Direct3D Feature Levels*
- Microsoft. *Rasterization Rules (Windows)*
- *Raster Order Views. (2015, July)*
- Pharr, & G. Humphreys, *Physically Based Rendering from Theory to Implementation* (pp. 279-296). Morgan Kaufmann.
Acknowledgement

- Gareth Thomas (AMD)
- Andrei Tatarinov (NVIDIA)