
Circular Separable
Convolution
Depth of Field
“Circular Dof”

Kleber Garcia

Rendering Engineer – Frostbite Engine

Electronic Arts Inc.

Agenda

• Background

• Results

• Algorithm

• Performance analysis

• Artifacts/Improvments

• Sources / Credits

• Q/A

• What is Depth of Field?

Background

• Near out of focus

Background

• Far out of focus

Background

Background

Bokeh –is the aesthetic quality of

the blur produced in the out-of-

focus parts of an image produced

by a lens.

Background
● Circle of Confusion (COC) – optical spot

caused by a cone of light rays from a lens
not coming to a perfect focus when imaging
a point source.

● Can be thought of the ‘radius of the blur’ at
a given pixel.

Visual Target

Results

● TODO: nice video 2

Sprite DOF

Circular DOF

Sprite DOF Circular DOF

Algorithm
Separable gather (Circular Dof filter)

● http://yehar.com/blog/?p=1495

By Olli Niemitalo
• Separable circular filter.

• Possible in the frequency domain
(imaginary space)!

• Decompose frame buffer into a Fourier
Transform
• Possible to mix the signals and get a

circular convolution

http://yehar.com/blog/?p=1495

Algorithm

● To understand the separable property
of Circular Dof, lets first take a look at
how separable Gather works.

Algorithm
Brute force gather vs Separable Gather

Brute Force Gather - O(n2) Separable Gather - O(n)

Algorithm
Separable Bokeh

● Our approach has same time complexity as separable Gather-Gaussian.

vs

Algorithm
Separable gather (Gaussian filter)

Algorithm
Separable gather (Gaussian filter)

Algorithm
Separable gather (Gaussian filter)

● 𝐹 𝑥 = 𝑒−𝑎𝑥
2

Clear Image Vertical Blur Horizontal Blur

Algorithm
Separable gather (Gaussian filter)

Algorithm
● A filter F(x) can be resolved to a set of weights.

● Our approach resolves a complex filter into a complex number

● Complex numbers have 2 components, real and imaginary

● Remember i * i = -1

● Let P be a complex number, 𝑃 = 𝑃𝑟 + 𝑃𝑖𝑖

● The sum of two complex numbers P and Q would be
𝑃 + 𝑄 = 𝑃𝑟 + 𝑄𝑟 + 𝑃𝑖 + 𝑄𝑖 𝑖

● The product of two complex numbers would be
𝑃 ∗ 𝑄 = 𝑃𝑟 ∗ 𝑄𝑟 − 𝑃𝑖 ∗ 𝑄𝑖 + [𝑃𝑟 ∗ 𝑄𝑖 + 𝑄𝑟 ∗ 𝑃𝑖]𝑖

Algorithm

● Lets look now at circular DoF in action…

Algorithm
Separable gather (Circular Dof filter)

One Component Filter

Algorithm
Separable gather (Circular Dof filter)

Algorithm
Separable gather (Circular Dof filter)

𝐹 𝑥 = 𝑒−𝑎𝑥
2
(cos 𝑏𝑥2 + 𝑖 sin 𝑏𝑥2)

𝐹 𝑥 = 𝑒−𝑎𝑥
2
(cos 𝑏𝑥2 + 𝑖 sin 𝑏𝑥2)

Algorithm
Separable gather (Circular Dof filter)

𝐶𝑜𝑙𝑜𝑟 𝑥 = 𝐴 ∗ 𝐹𝑟𝑒𝑎𝑙 𝑥 + 𝐵 ∗ 𝐹𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 (𝑥)

Algorithm
Separable gather (Circular Dof filter)

Circular Dof:
𝐹 𝑥 = 𝑒−𝑎𝑥

2
(cos 𝑏𝑥2 + 𝑖 sin 𝑏𝑥2)

Horizontal blur & combine

Final Image

Vertical Blur

Imaginary component

Real component

● That was just 1 component. We can add
filters (multiple components) and
approximate a circle better.

Algorithm
Separable gather (Circular Dof filter)

Algorithm
Two Component Filter

● We compute the filter the same way as before, but now with 2 components

Component 1

Component 0

real

imaginary

real

imaginary imaginary

real

imaginary

real

real

real

real

Algorithm
Circular DoF

● Low quality (1 component on left) vs High quality (2 components on the
right). We use the low quality for the near blur plane, and the high quality
for the far plane.

𝐶𝑜𝑙𝑜𝑟 𝑥 = 𝐴 ∗ 𝐹𝑟𝑒𝑎𝑙 𝑥 + 𝐵 ∗ 𝐹𝑖𝑚𝑎𝑔𝑖𝑛𝑎𝑟𝑦 (𝑥)
𝐹 𝑥 = 𝑒−𝑎𝑥

2
(cos 𝑏𝑥2 + 𝑖 sin 𝑏𝑥2)

RGB and CoC

Downsample

PixelShader

RGB

A(coc)

RGB

A(coc)

HorizontalBlur

Component 0

PixelShader

VerticalBlur

Component 0

PixelShader

HorizontalBlur

Component 1

PixelShader

VerticalBlur & Add C0

Component1

PixelShader

TileCocPass

ComputeShader

HorizontalBlur

PixelShader

VerticalBlur

PixelShader

Composite

● Start with clear image and
circle of confusion (near and far)

● In our case, the clear image is a
10 bit lighting buffer.

● The output would be a blurred
10 bit buffer.

● Split main image into near and far by
premultiplying circle of confusion

Tile the near COC (MAX within a certain tile size to get edge bleeding)

Artifacts
• Occluded circles get split in ‘half’ due to separable nature.

• Very subtle artifact

● Ghosting

● Can be reduced by biasing blending
(jumping to blur image as fast as possible)

Artifacts

Performance
● GPU (sprite dof 1080p, half res)

● 9.98ms on XB1

● 7.65ms on PS4

● GPU (1/4 res of 1080p, 2 components for far):

● 1.7ms on XB1

● 1.3ms on PS4

● GPU (1/2 res of 1080p, 1 component):

● 3.4ms on XB1

● 2.7ms on PS4

Performance (additional info)
● Limiting occupancy on xb1 and ps4 for downsampling pass of

coc and color (full res to quarter res)

● Downsampling pass is massively vmem bound, ends up
trashing the cache.

● Solution? Limit the occupancy!, can make it run as fast!

● XB1:

● #define __XBOX_LIMIT_OCCUPANCY_WITH_HARD_LIMIT 1

● PS4:

● #pragma argument(minvgprcount=84)

● #pragma argument(targetoccupancy=3)

● #pragma argument(scheduler=latency)

● special thanks to Tomasz Stachowiak [@h3r2tic]

https://www.facebook.com/h3r2tic?hc_ref=ARRGeoV0KDwhESdlOLzQn0LKuQoli3Dm_6YdGIphBBIyzjSdsURYGXiDFNWH8yRQ_Xk
https://twitter.com/h3r2tic

Additional Perf Opportunities
● Explore armortization – essentially less samples are required for

smaller CoC radii. We can precompute a set of filter weights, for
different radius ranges, and pick them dynamically.

● Would not improve performance on a fully blurred image.

● Would improve performance for areas fully clear of the image.

● Combine near and far

● Essentially have only one shader for horizontal and vertical
passes

● Use MRTs to output different values of near and far

● Might have to explore manual occupancy hints to preserve vmem
cache coherency

Additional Visual Improvements
● Trasparency: instead of using transparent depth to shift COC,

use multiple render planes / buckets and composite these.

● More on Ghosting

● improved performance gains and do the pass in full
resolution (see previous slide!)

● dynamically compute pixel to ratio bias, and use scene
information such as pixel luminance to automatically ‘jump’
to the next blur plane.

Shader Toy Example
https://www.shadertoy.com/view/Xd2BWc

PreFiltering
● Used a filter generator algorithm to

precompute the filter

● Madden uses a 68 pixels (in ¼ res r = 8)
diameter filter!

● It uses 2 component for far blur and 1
component for near blur.

● https://github.com/kecho/CircularDofFilterG
enerator

● A lite python version of the filter generator
can be found here

https://github.com/kecho/CircularDofFilterGenerator

Sources
● CSC algorithm blog post. (Olli Niemitalo,

2010) http://yehar.com/blog/?p=1495

● Five Rendering ideas from BF3 and NFS: e
run, (Electronic Arts, Siggraph 2011)
http://www.slideshare.net/DICEStudio/five
-rendering-ideas-from-battlefield-3-need-
for-speed-the-run

http://yehar.com/blog/?p=1495
http://www.slideshare.net/DICEStudio/five-rendering-ideas-from-battlefield-3-need-for-speed-the-run

Credits
Kleber Garcia - Render Engineer, Frostbite

Karolyn Boulanger – Render Engineer, EA Sports

Arthur Homs – Principal Engineer, Microsoft

Ollie Niemitalo – Mathematician, Signal processing scientist.

Q & A

Appendix – Mathematical
derivations.

F(x) filter derivation

● A separable filter F(x), is separable

when:

● F(√(x2+y2)) = F(x) * F(y)

F(x) = e-x^2 Gaussian function has this

property! Therefore that’s why is separable

F(x) filter derivation

● An imaginary number has a phase and
envelope:

● Imaginary number can be written as x + iy

● Or: r(cosφ + i sinφ)

● Or: reiφ

F(x) filter derivation

● Let F(x) be a complex function.

● Let |F(x)| be the magnitude (r in the previous
slide)

● Let arg(F(x)) be the envelope (angle φ)

● F(x) can be written as:
●F(x) = | F(x) | * (cos (arg(F(x)) + i*(sin(arg(F(x))))

F(x) filter derivation

● F(x) = | F(x) | * (cos (arg(F(x)) + i*(sin(arg(F(x))))

● Assume F(x) is separable.

● Hence |F(X)| must be a Gaussian function

●|F(x)| = e-a*x^2

● arg(F(√(x2 + y2))) = arg(F(x)) + arg(F(y))

●therefore arg(F(x)) = bx2

F(x) filter derivation

● Replacing the previous terms, we get

● F(x) = e-ax^2 * (cos(b*x2) + i * sin (b*x2))

● Arbitrary circles can be achieved a weighted sum of imaginary and
real elements.

● Final filter kernel function becomes:

● Ffinal(x) = A * Freal(x) + B * Fimaginary(x)

● A final sum of these components will give us a convoluted color.

F(x) filter derivation
●

Bracketing the filter

● How can we maximize bit precision? Bracketing
and squeezing the filter to produce numbers in
the [0,1] domain.

● Let 0 < x < N, where N is the max pixel width.

● Assume we have an arbitrary G kernel with the following properties:

● 𝑥=1
𝑁 𝐺 𝑥 = 𝑉

●𝑂 = 𝑀𝑖𝑛 𝐺(𝑥)

●S = 𝑥=1
𝑁 𝐺 𝑥 − 𝑂𝑘

● We can then transform the kernel G into the bracketed kernel G’, wich can
be defined as:

●𝐺′ 𝑥 =
𝐺 𝑥 −𝑂

𝑆
● We can then store coefficients O and S for G’(x)

Bracketing the filter

● Let I be a 1 dimensional (for simplicity) image, 16 bit rgba
buffer for our final storage.

● Let I’ be a temp storage, which can only store numbers from
0 to 1 (10 bit rgba buffer)

● Let J be our initial image.

● Lets now try to convolve J using G’(x) and store it in I’[x]
●Since we know O, and S we can store

●I’[w] = 𝑥=1
𝑁 𝐽 𝑤 𝐺′ 𝑥 <- Lets instead store the bracketed version, and separately keep track of the

kernel values O and S.

● I’[i] is not quite what we planned though! We want to take
I’[i] and convert it to the equivalent of I w = 𝑥=1

𝑁 𝐼 𝑤 𝐺 𝑥

Bracketing the filter

● Now, we know that I’ contains our bracketed filter values. When
we sample from I’, we can convert to the actual non bracketed by
applying some inverse operations.

● We know I w = 𝑥=1
𝑁 𝐽 𝑤 𝐺 𝑥

● Here is how we convert I’ into I:
●We know the definition of I’. We can expand I’ algebraically into

●𝐼′[𝑤] = 𝑥=1
𝑁 𝐽 𝑤 ∗

𝐺 𝑖 −𝑂

𝑆

●Means we can do some algebra and define I as

●𝐼[𝑤] = 𝑥=1
𝑁 𝐽 𝑤 ∗

𝐺 𝑖 −𝑂

𝑆
∗ 𝑠 + 𝑥=1

𝑁 𝐽 𝑤 𝑂

●𝐼[𝑤] = 𝑥=1
𝑁 𝐼′[𝑤] ∗ 𝑆 + 𝑥=1

𝑁 𝐽 𝑤 ∗ 𝑂

●Means that if we store O, S and Sum of all J[w]s (in a separate target) we
can compress the render targets into 10 bits with unbounded information.

Bracketing the filter

