
Sound Propagation
In Hitman

Stepan Boev
Audio Programmer, Io-Interactive

About me

• Audio programmer

• 10 years in the games industry

• Projects:

Agenda

• About Hitman

• Motivation

• Solution

• Implementation

• Challenges

• Conclusion

Agenda

• About Hitman

• Motivation

• Solution

• Implementation

• Challenges

• Conclusion

[Hitman gameplay trailer]

Game facts

• Stealth-oriented - “hide in plain sight”

• Exploring level in disguise and listening to NPC dialogue

• Large sandbox levels

• Both indoor and outdoor environments

• Mostly static level geometry

• With basic dynamic elements, such as:

• Opening doors, shooting out windows

• Possibly shooting holes in the walls

Development facts

• Powered by Glacier 2 engine (proprietary)

• Focus on visual programming (graphs)

• Sound system is based on Wwise

• Audio team

• 6 sound designers

• 1 programmer

Agenda

• About Hitman

• Motivation

• Solution

• Implementation

• Challenges

• Conclusion

Background

• Sound waves are:

• Absorbed, diffracted and reflected when interacting with
materials

• Simulating this can improve user experience

• Physically-based simulation is computationally
expensive

• We are interested in an efficient approximation

Impact on user experience

• Less confusion
• Smarter attenuation than falloff

• Man talking two meters away from you should not be heard if there is a
thick wall in between

• More immersion
• Give player aural clues about environment

• Somebody is talking in a room nearby

• The voice gets clearer as you approach the door leading to the room

• There is a radio playing behind that crate

How do we achieve this?

• Concrete goals
1. Muffle sounds occluded by walls

2. Muffle sounds obstructed by game objects

3. Make sounds appear to emanate from openings

• Let’s look at them in more detail

• Sound doesn’t know
about level geometry

• Regular distance-based
attenuation does not
handle sound’s path being
blocked by e.g. walls and
ceilings

Goal 1: Muffle sounds occluded by walls

Goal 1: Muffle sounds occluded by walls

• With wall occlusion,
sound is muffled or muted
by the wall

• Preventing player’s
confusion upon hearing
‘ghost sound’

• Example: gunshot

Unoccluded / semi-occluded

Goal 2: Muffle sounds obstructed by objects

• When there are objects
between sound and
listener, sound should be
slightly muffled

Goal 2: Muffle sounds obstructed by objects

• When line of sight is
restored, sound should go
back to normal

• Transition between
muffled and normal should
be smooth

Goal 3: Make sounds appear to emanate
from openings

• Sound is diffracted
around opening’s edges

• It gradually gets louder
as listener is approaching
the opening…

Goal 3: Make sounds appear to emanate
from openings

• …becoming completely
unoccluded when listener
is in front of the opening

• Sound is also perceived
to be emanating from the
direction of the opening

Propagation system requirements

• Immersive

• Consistent
• No jumps in attenuation or other audible artefacts

• Computationally inexpensive
• Total CPU budget for audio in Hitman:

• 1ms on the main thread

• Up to 50% of one core

• Support for dynamic geometry

• Reasonable implementation time

Agenda

• About Hitman

• Motivation

• Solution

• Implementation

• Challenges

• Conclusion

Solution components

• Propagation geometry

• Occlusion

• Propagation paths

• Obstruction

Propagation geometry

• First, we need some meta data about the level

• Rough replica of level geometry…

• …that should allow to efficiently compute sound
propagation paths

• Physics/graphical data usually can’t be used as is

• We need special propagation geometry

Propagation geometry

• Consists of “rooms” and “portals”

• Rooms represent environments
• Both indoor and outdoor

• Portals represent openings

• Rooms keep track of sound sources in them

• Portals connect adjacent rooms

• They are used for computing propagation paths

Propagation geometry

• Rooms can be arbitrary 3D primitives

• Boxes, cylinders, polygonal shapes

• Portals are 2D primitives

• They are 3D-positioned and rotated

• Rectangles, circles, polygonal shapes

• (We didn’t need polygonal shapes in our levels yet)

Grouping of rooms

• Primitives can be grouped,
forming complex shapes

• In this example, red rooms
are grouped and treated as
one

Nesting of rooms

• Rooms can be nested

• For example, we can have
one shape for the whole
building and a shape for each
room in that building

Geometry properties

• Every room has “occlusion value”

• Defines how much sound is absorbed by it walls

• e.g. different values for concrete and wooden rooms

• Every portal has occlusion value as well

• These values are dynamic and can be driven by gameplay

Room occlusion value

• Why single value for all walls?

(top-down view)

Wall A

Wall B

Room occlusion value

• Why single value for all walls?

• If a certain wall must have a different
value, create a portal for it (blue line)

• This can be done at runtime, e.g. if a
graphical wall is blown up

• Portals may overlap one another

• e.g. a portal for wall and a portal for a
window on that wall

Geometry setup

• Currently done manually in
the editor

• Takes 1-2 days to setup a
production level

• Plus additional overhead
to maintain

• But, we are looking into
automated generation

Geometry stats

• Average per game level in Hitman:
• 275 rooms

• 800 portals

• These values can go much higher
• …without significant impact on performance

Computing occlusion

Portal normal

θ

• Find closest point to
listener on the portal

• Angle θ between portal
normal and vector from
that point toward listener
defines interpolation
factor…

• …between portal’s and
room’s occlusion values

Vector to listener

Max angle

Computing occlusion

Portal normal

θ

• This means that occlusion
value will gradually transition
from room to portal occlusion
value as listener approaches
a portal

• Maximum angle can be set
individually for each portal

• Each portal also adds some
occlusion based on distance
to listener or previous portal

Max angle

Vector to listener

Computing occlusion

Sound to portal

θ

Vector to listener

• We have also tried
calculation based on the angle
as shown

• This sounds less immersive

• That’s why we ignore how
sound is positioned in relation
to the portal when calculating
occlusion

LESS IMMERSIVE:

Computing occlusion

θ

• This means we don’t have to
calculate occlusion for individual
sounds

• Computing occlusion for a portal
gives us one value for all sounds in
the opposite room

• Also good for short-lived emitters

• This is faster and empirically
sounds better = portal

Computing occlusion

θ

• What if there are several portals?

• We compute occlusion value for all
and pick the one with the lower value

• In this example, P2 would be
preferred, because the listener is
right in front of it

• However, if P2 was a closed door,
and P1 was an open window, we
would probably prefer P1

P1

P2

[video demo]

Propagation increases falloff distance

• Distance from sound to
listener becomes longer with
diffraction

• Falloff attenuation should
be calculated using the
propagated distance

• Reposition the emitter
farther away along the yellow
vector or scale the falloff
distance

Direct path

Propagated path

Perceived position

• You may also want to
create a ‘virtual’ emitter
along the red vector

• This will create perception
of sound coming from the
direction of the portal

Direct path

Propagated path

Translating occlusion value

• Occlusion value is a float in
range from 0 to 100

• It is translated into attenuation
and filtering (e.g. low-pass filter)
applied on sound

• We use RTPCs in Wwise to
have different occlusion settings
for different sounds

Computing propagation paths

• Sound can reach listener
via multiple rooms and
portals

• How do we compute
occlusion value efficiently?

Computing propagation paths

• Interconnected rooms
and portals form a graph

• Rooms are nodes,
portals are edges

• Traverse the graph,
starting from the listener’s
room, to compute occlusion
value for each room

(top-down view)

Obstruction

• Before talking more about the graph…

• What about obstruction by objects?

• Used for mild attenuation (-9 dB) in Hitman

• Cannot use propagation geometry
• It doesn’t include dynamic objects or static object (e.g. crates)

• Level geometry (e.g. walls, doors) should be ignored by
obstruction

Obstruction

• Cone raycast

• Obstruction value depends on how many rays hit an obstacle

• If you want to reduce number of raycasts

• Single raycast with fade-out when ray hits and fade-in when it
doesn’t

• Raycast obstruction is computed only on emitters in:

• Listener’s room

• Different room, but with direct line-of-sight between emitter
and listener through a portal

• Less emitters to process + we ignore emitters occluded by walls

Translating obstruction value

• Obstruction value is a float in range
from 0 to 100

• It is translated via global obstruction
volume/LPF curves in Wwise

Agenda

• About Hitman

• Motivation

• Solution

• Implementation

• Challenges

• Conclusion

Sound registration

• Every 3D sound registers itself with the room it is
located in

• At game start

• When its position changes

• Its room’s shape changes

• This requires fast routine for room lookup

• Described later

Computing propagation paths

• At runtime, traverse graph at regular intervals

• Not necessarily on every frame
• 10-15 FPS is fine

• Can be done in a separate thread

• After each traversal pass…

• Apply computed occlusion values on sounds

• Calculate positions and falloff scaling for each sound

Traversal routine

• Start with all rooms marked as
fully occluded

• Perform breadth-first traversal of
the graph

• Have a queue of rooms to traverse

Traversal routine

• Start with all rooms marked as
fully occluded

• Perform breadth-first traversal of
the graph

• Have a queue of rooms to traverse

• Find and enqueue listener’s room

• For each queued room, compute
occlusion for each portal and queue
connected rooms if they are not fully
occluded

• Process the queue until it’s empty

1

Traversal example

• Compute occlusion value for green
portal

• Arrow indicates direction of sound
propagation

• Store computed value on room 2
along with a portal pointer

• Only if it’s lower than room’s current
value

• Add room 2 to the traversal queue

2

1

Traversal example

2

1 3

Traversal example

4

2

1 3

Occlusion value for is

summed occlusion of each

portal on its way to listener

4

Traversal example

4

2

1 3

5

Traversal example

4

2

1 3

5

• What if path from room 3 into
room 5 is better than from room 2?

• Lower occlusion value

• Override occlusion value and
portal pointer on room 5

• Re-queue room 5
• If it isn’t already in the queue

• Because room 2 and room 4 occlusion
has to be recalculated!

Final propagation paths

4

2

1 3

5

Observe path from into 2 1

Traversal rules

• We do not queue fully occluded rooms

• We do not process a portal if…

• … it is farther away from listener than a certain scripted
maximum distance

• This makes subset of traversed, “audible” rooms a
very small part of total geometry

Fast room lookup

• GetRoomFromPoint()

• We use spatial subdivision data structure “Implicit grid”
• May already be implemented in your check physics or render code

• Described in detail in Real-Time Collision Detection (2005, C. Ericson)

• Optimal when number of rooms is relatively low

• Other spatial subdivision techniques might be used
• BVH

• Octree

Agenda

• About Hitman

• Motivation

• Solution

• Implementation

• Challenges

• Conclusion

Challenges

• Reducing overhead of maintaining geometry

• Good start: put portals within templates of graphical
openings (doors, windows)

• Auto-generate geometry
• Must be possible to tweak generated results manually

• Reverb

Reverb

• Sound should reflect environment type
• e.g. shots fired in a tunnel

• Every room should have a reverb preset

• Easy solution
• Apply listener’s room reverb on all sounds

• Crossfade with reverb of the room which listener is moving into

• Negatives
• Reverb for every sound is played in all speakers (no reverb

directionality)

• Gives inaccurate clue about environment for sounds not in the
listener’s room

• Do not apply listener’s room reverb on all sounds

• Find ‘optimal’ (usually longest) reverb

Reverb – better solution

Small room Small room

Large hall

(Player wil expect to hear
this reverb)

Optimal reverb

• For sounds not in the listener’s room

• Of all rooms that sound propagates through, pick the
one which has reverb with highest weight

• Highest weight = longest reverb by default, but can be
overridden manually

• Potentially many reverb instances playing

• Even if we submix sounds that use same preset

• Works with fast reverbs

Reverb directionality

• Using single-channel un-panned reverbs means…

• Reverb for the guy shooting on your left will play in all
speakers

• Not a problem, until we have, say, 10 audible rooms =
10 reverbs in all speakers

• It may sound bad

Reverb directionality

• Use single-channel reverbs, but…

• Have one instance (auxiliary bus) per room

• Pan them at runtime

• Or, use multi-channel reverbs

• Can be expensive

Agenda

• About Hitman

• Motivation

• Solution

• Implementation

• Challenges

• Conclusion

Advantages of our system

• Delivers immersive and consistent results

• Quite fast to implement

• Inexpensive CPU- and memory-wise

• Scalable

• Supports dynamic and irregular geometry

Advantages of our system

• Support for dynamic/destructible geometry
• Occlusion values are modifiable at runtime

• Rooms and portals are modifiable at runtime
• No offline export step

• Raycast-based obstruction

• Support irregularly-shaped geometry
• Rooms and portals can have arbitrary shapes and be grouped

Credits

• People who designed and first used the system:

• Frank Lindeskov – Lead Sound Designer

• Jonas Breum Jensen – Senior Sound Designer

Thank you!

Questions?

stepanboev@gmail.com

https://se.linkedin.com/in/stepanboev

mailto:stepanboev@gmail.com
https://se.linkedin.com/in/stepanboev

